Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{7\cdot8}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A< 1-\frac{1}{8}< 1\)
Ta có\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}\)<\(\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+...+\frac{1}{5}\)=\(\frac{5}{6}\)(6 c/s \(\frac{1}{5}\))
Ta lại có \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{17}\)<\(\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}\)=\(\frac{7}{11}\)(7 c/s \(\frac{1}{11}\))
Suy ra \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}\)<\(\frac{110}{55}\)=2
Vậy...
Hok tốt
Đặt \(A=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}\)
Ta có: \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{6}{5}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}< \frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}=\frac{7}{11}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< \frac{6}{5}+\frac{7}{11}\)
\(\Rightarrow A< \frac{101}{55}< \frac{110}{55}=2\)
\(\Rightarrow A< 2\)( ĐPCM )
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{20}\)
\(\Rightarrow A< 1-\frac{1}{20}< 1\)
Đặt \(A=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+....+\frac{1}{17}\)
Ta có: \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{6}{5}\left(1\right)\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}< \frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}=\frac{7}{11}\left(2\right)\)
Từ (1)(2) \(\Rightarrow A< \frac{6}{5}+\frac{7}{11}=\frac{66}{55}+\frac{35}{55}=\frac{101}{55}< \frac{110}{55}=2\)
\(\Rightarrow A< 2\Rightarrow\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< 2\left(đpcm\right)\)
Ta có:
1/5=1/5
1/6<1/5
1/7<1/5
..........
1/10<1/5
=>1/5+1/6+...+1/10<1/5.6=6/5(1)
Lại có :
1/11=1/11
1/12<1/11
1/13<1/11
.............
1/17<1/11
=>1/11+1/12+1/13+...+1/17<1/11.7=7/11(2)
Từ (1)và (2)=>1/5+1/6+...+1/17<6/5+7/11=101/55<110/55=2
=>1/5+1/6+...+1/17<2
ĐPCM
Bài 2:
a, S = 1/11 + 1/12 + .. +1/20 với 1/2
SỐ số hạng tổng S: [20 - 11]: 1 + 1 = 10 số
mà 1/11 > 1/20
1/12 > 1/20
.........................
1/20 = 1/20
=> 1/11 + 1/12 + ... + 1/20 > 1/20 . 10 => S > 1/2
b, B = 2015/2016 + 2016/2017 và C = 2015+2016/2016+2017
Dễ dàng ta thấy: C = 4031/4033 < 1
B = 2015/2016 + 2016/2017
B = 2015/2016 + [1/2016 + 4062239/4066272]
B = [2015/2016 + 1/2016] + 4062239/4066272]
B = 1 +4062239/4066272
=> B > 1
Vậy B > C
c, [-1/5]^9 và [-1/25]^5
ta có: 255 = [52]5 = 52.5 = 510 > 59
=> [1/5]9 > [1/25]5
=> [-1/5]9 < [-1/25]5
d, 1/32+1/42+1/52+1/62 và 1/2
ta có: 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 = 1/9 + 1/16 + 1/25 + 1/36
mà: 1/9 < 1/8
1/16 < 1/8
1/25 < 1/8
1/36 < 1/8
=> 1/9+1/16+1/25+1/36 < 1/2
Vậy 1/32+1/42+1/52+1/62 < 1/2
Bài 1:
A = 3/4 . 8/9 . 15/16....2499/2500
A = [1.3/22][2.4/32]....[49.51/502]
A = [1.2.3.4.5...51 / 2.3.4....50][3.4.5...51 / 2.3.4...50]
A = 1/50 . 51/2
A = 51/100
B = 22/1.3 + 32/2.4 + ... + 502/49.51
B = 4/3.9/8....2500/2499
Nhận thấy B ngược A => B = 100/51 [cách tính tương tự tính A]
Bài 2:
a. S = 1/11+1/12+...+1/20 và 1/2
Số số hạng tổng S: [20 - 11]: 1 + 1 = 10 [ps]
ta có: 1/11 > 1/20
Đặt S=1/4+1/16+1/36+...+1/10000
S= 1/4x(1+1/4+1/9+...+1/2500)
S= 1/4x(1+1/2x2+1/3x3+...+1/50x50)
S< 1/4x(1+1/1x2+1/2x3+...1/49x50)
S< 1/4x(1+1-1/2+1/2-1/3+....+1/49-1/50)
S< 1/4x(1+1-1/50)
S< 1/4x(2-1/50)<2/4(2/4=1/2)
S< 1/2
Ta có: \(\frac{1}{4}< \frac{1}{2}\)
\(\frac{1}{16}< \frac{1}{2}\)
... . . .
\(\frac{1}{10000}< \frac{1}{2}\)
\(\frac{1}{10000}+\frac{1}{10000}+...+\frac{1}{10000}< \frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(*) (n phân số \(\frac{1}{10000}\) ; n phân số \(\frac{1}{2}\))
Từ đó suy ra \(\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{1000}< \frac{1}{2}\left(đpcm\right)\)