cho tam giác abc có tia phân giác của góc b cắt tia phân giác của góc c ở o
a, trong tam giác boc, cạnh nào lớn nhất.
b,giả sử ob<oc . so sánh ob và oc.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Vì tam giác ABC đều => BD,CE vừa là tia phân giác vừa là đường cao=>BD vuông góc AC và CE vuông góc AB
b, vì hai tia phân giác BD và CE cắt nhau tại O suy ra O là tâm tam giác ABC suy ra OA = OB = OC (tính chất)
c, ta có góc AOB + góc BOC + góc COA = 360 độ mà AOB = BOC= COA Suy ra 3 AOB= 360 suy ra AOB = 120 vậy AOB=BOC=COA=120
Ta có AB=AC (GT), AO chung, OB=OC (GT) suy ra tam giác ABO=tam giác ACO (c.c.c)
suy ra góc BAO=góc CAO
mà O là điểm nằm trong tam giác ABC nên tia AO nằm giữa hai tia AB và AC
suy ra AO là tia phân giác của góc BAC (1)
chứng minh tương tự BO là tia phân giác của góc ABC (2)
CO là tia phân giác của góc ACB (3)
Từ(1), (2), (3) suy ra điều phải chứng minh
a) BOC=180-(OBC+OCB)=180-(1/2.ABC+1/2.ACB)=180-[1/2(ABC+ACB)]=180-{1/2[180-BAC]}=180-1/2.120=180-60=120 độ
a, tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)
góc BAC = 60 (gt)
=> góc ABC + góc ACB = 180 - 60 = 120 (1)
BD là phân giác của góc ABC (gt) => góc DBC = 1/2*góc ABC (tc)
CE là phân giác của góc ACB (gt) => ECB = 1/2*góc ACB (tc)
=> góc DBC + góc ECB = 1/2*góc ABC + 1/2*góc ACB = 1/2(góc ABC + góc ACB) và (1)
=> góc DBC + góc ECB = 1/2*120 = 60
xét tam giác OBC có : góc OBC + góc BCO + góc BOC = 180 (đl)
=> góc BOC = 180 - 60 = 120
b, góc BOC + góc BOE = 180 (kb) mà góc BOC = 120 (câu a)
=> góc BOE = 180 - 120 = 60 (2)
OF là phân giác của góc BOC (gt)
=> góc BOF = 1/2*BOC = góc FOC (tc) mà góc BOC = 120 (câu a)
=> góc BOF = 1/2*120 = 60 = góc FOC (3)
(2)(3) => góc BOF = góc BOE
xét tam giác BOF và tam giác BOE có : BO chung
góc ABO = EBO = góc FBO do BO là phân giác của góc ABC (gt)
=> tam giác BOF = góc BOE (g-c-g)
c, góc DOC = góc BOE (đối đỉnh) mà góc BOE = 60 (Câu b)
=> góc DOC = 60
góc FOC = 60 (câu b)
=> góc DOC = góc FOC
xét tam giác DOC và tam giác FOC có : OC chung
góc FCO = góc DCO do OC là phân giác của góc BCA (gt)
=> tam giác DOC = tam giác FOC (g-c-g)
=> OD = OF (Đn)
tam giác OEB = tam giác OFB (câu b) => OE = OF (đn)
=> OE = OF = OD
d, góc EOB + góc BOF = góc EOF
mà góc EOB = góc BOF = 60
=> góc EOF = 60.2 = 120 (4)
góc FOC + góc OCD = góc FOD
mà góc FOC = góc OCD = 60
=> góc FOD = 60.2 = 120 (5)
(4)(5) => góc FOD = góc EOF = 120
xét tam giác EOF và tam giác DOF có : OF chung
OE = OD (Câu c)
=> tam giác EOF = tam giác DOF (c-g-c)
=> EF = DF (đn)
=> tam giác EFD cân tại F (đn) (6)
OE = OF => tam giác OEF cân tại O => góc OFE = (180 - góc EOF) : 2
mà góc EOF = 120 (cmt)
=> góc EFO = (180 - 120) : 2 = 30
tương tự cm được góc OFD = 30
mà góc OFD + góc EFO = góc EFD
=> góc EFD = 30 + 30 = 60 và (6)
=> tam giác EFD đều (tc)
Xét ΔAOC và ΔBOC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔAOC=ΔBOC
có A = 60 độ (gt)
suy ra c+b=180-60=120
mà c1=1/2 c:b1=1/2 b ( tích chất tia phân giác )
suy ra c1+b1=120:2=60
suy ra BOC = 180-60=120
B)
xét Tam giác BOE và BOF bằng nhau theo ( cạnh góc cạnh)
suy ra OB là tia phân giác ủa EOF
C: có Phân giác Ce và BD cắt Nhau tại O
mà AF cắt CE và BD tại O suy ra AF LÀ phân giác của góc BAC
từ đó suy ra OD=OE=OF ( tích chất của tia phân giác )
, hình thì m tự vẽ bố éo rảnh ngồi vẽ :))
a) Ta có \(\widehat{B_1}=\widehat{B_2};\widehat{C_1}=\widehat{C_2}\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-60^o}{2}=60^o\)
Vậy thì \(\widehat{BOC}=180^o-60^o=120^o\)
b) Xét tam giác BEO và BFO có:
BE = BF (gt)
BO chung
\(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\Delta BEO=\Delta BFO\left(c-g-c\right)\)
\(\Rightarrow\widehat{BOE}=\widehat{BOF}\) (Hai góc tương ứng)
Vậy OB là tia phân giác góc EOF.
c) Gọi K, H là chân đường cao hạ từ O xuống AB và AC
Do O là giao điểm của 3 đường phân giác nên OH = OK
Ta có \(\widehat{EAD}+\widehat{EOD}=60^o+\widehat{BOC}=60^o+120^o=180^o\)
\(\Rightarrow\widehat{AEO}+\widehat{ODK}=180^o\Rightarrow\widehat{OEH}=\widehat{ODK}\Rightarrow\widehat{HOE}=\widehat{KOD}\)
Vậy thì \(\Delta OEH=\Delta ODK\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow OE=OD\)