a) Cho A = \(\frac{x^2}{3x+1}\) . Chứng tỏ A là phân số tối giản với mọi \(\inℤ\)
b) Tìm x, y \(\inℤ\)để 12.x2 = (3.x + 1).y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
câu 1b
Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*
Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d
suy ra: 2(3n-7) chia ht cho d , 3(2n-5) chia ht cho d
suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d
dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1
Vậy......
1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản
Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1
Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) ) = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1
=> \(\frac{3n-7}{2n-5}\) là phân số tối giản
3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)
Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)
=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2
a) \(n-2\ne0\Leftrightarrow n\ne2\)
b) \(\frac{15}{n-2}\in Z\) khi \(n-2\inƯ\left(15\right)\)
\(\Leftrightarrow n-2\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
đến đây tự lập bảng rồi làm
a, n-2 khác 0 nên n khác 2
b, n-2 là ước của 15 vậy n-2 = { +-1;+-3;+-5;+-15} tương ứng ta có
n-2 = -1 => n=1 Tm
n-2 =1 => n=3 Tm
n-2=3 => n= 5 Tm
tương tự tìm các giá trị còn lại nhé
ks cho mình nhé
a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:
\(3x+2⋮x+1\)
Ta có: 3x + 2 = 3(x + 1) - 1
mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1
có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1 hay x + 1 \(\in\)Ư(-1) = {1;-1}
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2
b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)
\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)
\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)
\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(=>1⋮d\) \(=>d=1\)
Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản
Để M nguyên thì 4n+9 chia hết cho 2n+3
<=> 2(2n+3) +3 chia hết cho 2n+3
=> 3 chia hết cho 2n+3
Vì n nguyên nên 2n+3 là ước của 3
Các ước của 3 là 3;1;-1;-3
Do đó,2n+3 thuộc {3;1;-1;-3}
=> n thuộc {0;-0,5;-2;-3}
Vì n nguyên nên n thuộc {0;-2;-3}
Vậy ...
b, chứng minh tương tự nhưng tử ko chia hết cho mẫu
a) Để \(M=\frac{4n+9}{2n+3}\)\(\inℤ\)
\(\Rightarrow4n+9⋮2n+3\)
\(\Rightarrow\)\(2(2n+3)+3⋮2n+3\)
Mà 2(2n+3) chia hết cho 2n+3
=> 2 chia hết cho 2n +3
=> 2n+3 \(\inƯ\left(3\right)\)
TA CÓ BẢNG SAU : ( Lập bảng nha )
phần b mik chưa nghĩ ra nha
vì n-1 và n-2 là 2 số tự nhiên liên tiếp
suy ra phân số n-1/n-2 là phân số tối giản
k mik nha
Ta chứng minh tính chất : Hai số nguyên liên tiếp khác 0 luôn nguyên tố cùng nhau
Thật vậy :
Gọi 2 số nguyên liên tiếp khác 0 đó là \(a\)và \(a+1\)(\(a\notin\left\{0;-1\right\}\))
Gọi \(d=ƯCLN\left(a;a+1\right)\)\(\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}a⋮1\\a+1⋮d\end{cases}}\)
\(\Rightarrow\left(a+1\right)-a⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(a;a+1\right)=1\)
\(\Rightarrow a\)và \(a+1\)nguyên tố cùng nhau với \(a\notin\left\{0;-1\right\}\)
Áp dụng :
Để \(A=\frac{n-1}{n-2}\left(n\ne2\right)\)là phân số tối giản
\(\LeftrightarrowƯCLN\left(n-1;n-2\right)=1\)
\(\Leftrightarrow n-1\ne0\)(do \(n\ne2\Rightarrow n-2\ne0\)và \(n-1\)và \(n-2\)là hai số nguyên liên tiếp)
\(\Leftrightarrow n\ne1\)
Vậy \(n\notin\left\{1;2\right\}\)thì A tối giản