cho tam giác ABC có AB < BC, I là trung điểm của AC trên tia đối của tia IB lấy điểm D sao cho IB=ID.
CMR:
a) \(\Delta IAB=\Delta ICD\)
b) \(\widehat{IBA}=\widehat{IBC}\)
\(BI< \)\(\frac{AB+BC}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔIAB và ΔICD có
IA=IC(I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)
IB=ID(gt)
Do đó: ΔIAB=ΔICD(c-g-c)
b) Ta có: ΔIAB=ΔICD(cmt)
nên AB=CD(hai cạnh tương ứng)
mà AB<BC(gt)
nên CD<BC
Xét ΔCBD có CD<BC(cmt)
mà góc đối diện với cạnh CD là \(\widehat{CBD}\)
và góc đối diện với cạnh BC là \(\widehat{BDC}\)
nên \(\widehat{CBD}< \widehat{BDC}\)
\(\Leftrightarrow\widehat{IBC}< \widehat{IDC}\)
mà \(\widehat{IDC}=\widehat{IBA}\)(ΔIDC=ΔIBA)
nên \(\widehat{IBA}>\widehat{IBC}\)(đpcm)
a) Xét ΔIAB và ΔICD có
IA=IC(I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)
IB=ID(gt)
Do đó: ΔIAB=ΔICD(c-g-c)
b) Ta có: ΔIAB=ΔICD(cmt)
nên AB=CD(hai cạnh tương ứng)
mà AB<BC(gt)
nên CD<BC
Xét ΔBCD có CD<BC(cmt)
mà góc đối diện với cạnh CD là góc DBC
và góc đối diện với cạnh BC là góc BDC
nên \(\widehat{DBC}< \widehat{BDC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{IDC}>\widehat{IBC}\)
mà \(\widehat{IDC}=\widehat{IBA}\)(ΔIAB=ΔICD)
nên \(\widehat{IBA}>\widehat{IBC}\)(đpcm)
a: Xét ΔIAB và ΔICD có
IA=IC
góc AIB=góc CID
IB=ID
Do đo: ΔIAB=ΔICD
b: Ta có: ΔIAB=ΔICD
nên \(\widehat{IBA}=\widehat{IDC}\)
mà \(\widehat{IDC}>\widehat{IBC}\)
nên \(\widehat{IBA}>\widehat{IBC}\)
c: AB+BC=CD+BC>BD>2BI
nên \(BI< \dfrac{AB+BC}{2}\)
D,
Vẽ tia đối EH của IE sao cho EH =IE
theo c, IE song song AB =>IH SONG SONG AB=> góc EIB = IBA,AIB=IBH(GÓC)
tg IAB và tg IHB có:
+, góc IBA=EIB(CM TRÊN)
+, GÓC AIB=IBH(CM TRÊN)
+, IB:CẠNH CHUNG
=> HAI TG ĐÓ BẰNG NHAU
=>IH=AB( 2 CẠNH...)
MÀ IE=1/2 IH
=> IE=1/2AB
MÀ AB=DC(THEO A, 2 TAM GIÁC ĐÓ BẰNG NHAU NÊN CẠNH TƯƠNG ỨNG BẰNG NHAU)
=>IE=1/2DC
=>DC=2IE
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Thôi , khỏi vẽ hình nha ! Ngại lém !
a) Xét tam giác AIB và tam giác CID có :
AI = IC ( I là trung điểm AC )
Góc AIB = góc CID ( 2 góc đối đỉnh )
BI = DI ( GT )
=> Tam giác AIB = tam giác CID ( c - g - c )
b) Hình như phần này sai đề hay sao ý bạn ạ !
a) Xét Δ AIB và Δ CID:
+ IB = ID (gt).
+ IA = IC (I là trung điểm của AC).
+ ^AIB = ^CID (2 góc đối đỉnh).
=> Δ AIB = Δ CID (c - g - c).
b) Xét tứ giác ABCD có:
+ I là trung điểm của AC (gt).
+ I là trung điểm của BC (IB = ID).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AD = BC và AD // BC (Tính chất hình bình hành).
c) Xét tứ giác KABC có:
+ E là trung điểm của AB (gt).
+ E là trung điểm của KC (EC = EK).
=> Tứ giác KABC là hình bình hành (dhnb).
=> KA // BC (Tính chất hình bình hành).
Mà AD // BC (cmt).
=> 3 điểm D, A, K thẳng hàng (đpcm).