K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔIAB và ΔICD có 

IA=IC(I là trung điểm của AC)

\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)

IB=ID(gt)

Do đó: ΔIAB=ΔICD(c-g-c)

b) Ta có: ΔIAB=ΔICD(cmt)

nên AB=CD(hai cạnh tương ứng)

mà AB<BC(gt)

nên CD<BC

Xét ΔCBD có CD<BC(cmt)

mà góc đối diện với cạnh CD là \(\widehat{CBD}\)

và góc đối diện với cạnh BC là \(\widehat{BDC}\)

nên \(\widehat{CBD}< \widehat{BDC}\)

\(\Leftrightarrow\widehat{IBC}< \widehat{IDC}\)

mà \(\widehat{IDC}=\widehat{IBA}\)(ΔIDC=ΔIBA)

nên \(\widehat{IBA}>\widehat{IBC}\)(đpcm)

a) Xét ΔIAB và ΔICD có 

IA=IC(I là trung điểm của AC)

\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)

IB=ID(gt)

Do đó: ΔIAB=ΔICD(c-g-c)

b) Ta có: ΔIAB=ΔICD(cmt)

nên AB=CD(hai cạnh tương ứng)

mà AB<BC(gt)

nên CD<BC

Xét ΔBCD có CD<BC(cmt)

mà góc đối diện với cạnh CD là góc DBC

và góc đối diện với cạnh BC là góc BDC

nên \(\widehat{DBC}< \widehat{BDC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

hay \(\widehat{IDC}>\widehat{IBC}\)

mà \(\widehat{IDC}=\widehat{IBA}\)(ΔIAB=ΔICD)

nên \(\widehat{IBA}>\widehat{IBC}\)(đpcm)

a: Xét ΔIAB và ΔICD có

IA=IC

góc AIB=góc CID

IB=ID

Do đo: ΔIAB=ΔICD

b: Ta có: ΔIAB=ΔICD

nên \(\widehat{IBA}=\widehat{IDC}\)

mà \(\widehat{IDC}>\widehat{IBC}\)

nên \(\widehat{IBA}>\widehat{IBC}\)

c: AB+BC=CD+BC>BD>2BI

nên \(BI< \dfrac{AB+BC}{2}\)

30 tháng 3 2016

D,
Vẽ tia đối EH của IE sao cho EH =IE
theo c, IE song song AB =>IH SONG SONG AB=> góc EIB = IBA,AIB=IBH(GÓC)
tg IAB và tg IHB có:
+, góc IBA=EIB(CM TRÊN)
+, GÓC AIB=IBH(CM TRÊN)
+, IB:CẠNH CHUNG
=> HAI TG ĐÓ BẰNG NHAU
=>IH=AB( 2 CẠNH...)
MÀ IE=1/2 IH
=> IE=1/2AB
MÀ AB=DC(THEO A, 2 TAM GIÁC ĐÓ BẰNG NHAU NÊN CẠNH TƯƠNG ỨNG BẰNG NHAU)
=>IE=1/2DC
=>DC=2IE

30 tháng 3 2016

xl nha, mik vẽ hơi xấu

15 tháng 11 2019

Thôi , khỏi vẽ hình nha ! Ngại lém !

a) Xét tam giác AIB và tam giác CID có : 

AI = IC ( I là trung điểm AC )

Góc AIB = góc CID ( 2 góc đối đỉnh )

BI = DI ( GT )

=> Tam giác AIB = tam giác CID ( c - g - c ) 

b) Hình như phần này sai đề hay sao ý  bạn ạ !

4 tháng 12 2021

a) Xét Δ AIB và Δ CID:

+ IB = ID (gt).

+ IA = IC (I là trung điểm của AC).

+ ^AIB = ^CID (2 góc đối đỉnh).

=> Δ AIB = Δ CID (c - g - c).

b) Xét tứ giác ABCD có:

+ I là trung điểm của AC (gt). 

+ I là trung điểm của BC (IB = ID).

=> Tứ giác ABCD là hình bình hành (dhnb).

=> AD = BC và AD // BC (Tính chất hình bình hành).

c) Xét tứ giác KABC có: 

+ E là trung điểm của AB (gt).

+ E là trung điểm của KC (EC = EK).

=> Tứ giác KABC là hình bình hành (dhnb).

=> KA // BC (Tính chất hình bình hành).

Mà AD // BC (cmt).

=> 3 điểm D, A, K thẳng hàng (đpcm).

a) Xét ΔAIB và ΔCID có

IA=IC(I là trung điểm của AC)

\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)

IB=ID(gt)

Do đó: ΔAIB=ΔCID(c-g-c)

b) Xét ΔAID và ΔCIB có 

IA=IC(I là trung điểm của AC)

\(\widehat{AID}=\widehat{CIB}\)(hai góc đồng vị)

ID=IB(gt)

Do đó: ΔAID=ΔCIB(c-g-c)

Suy ra: AD=CB(Hai cạnh tương ứng) và \(\widehat{DAI}=\widehat{BCI}\)(hai góc tương ứng)

mà \(\widehat{DAI}\) và \(\widehat{BCI}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)