Tính hợp lý:
\(\dfrac{4^2.25^2+32.125}{2^3.5^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
\(B=\frac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}=\frac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}=\frac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}=\frac{2^3\cdot5^2\left(2\cdot5^2+2^3\cdot5\right)}{2^3\cdot5^2}\)
\(=2\cdot5^2+2^3\cdot5=2\cdot25+8\cdot5=50+40=90\)
\(B=\frac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\)
\(B=\frac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\)
\(B=\frac{2^4\cdot5^3\left(5+2\right)}{2^3\cdot5^2}\)
\(B=\frac{2^4\cdot5^3\cdot7}{2^3\cdot5^2}\)
B = 2 . 5 . 7
B = 70
Không chắc =))
a: \(\left(0.5\right)^3\cdot2^3=1\)
b: \(\left(0.25\right)^2\cdot16=1\)
c: \(\left(\dfrac{3}{5}\right)^3:\left(-\dfrac{27}{1000}\right)=\dfrac{3^3}{5^3}\cdot\dfrac{-1000}{27}=\dfrac{-1000}{125}=-8\)
=\(\dfrac{\left(2^2\right)^2.\left(5^2\right)^2+2^5.5^2}{2^3.5^2}\)
=\(\dfrac{2^4.5^4+2^5.5^2}{2^3.5^2}\)
=\(\dfrac{2^3.\left(2.5^4+2^2.5^2\right)}{2^3.5^2}\)
=\(\dfrac{5^2.\left(2.5^2+2^2\right)}{5^2}\)
=\(2.5^2+2^2=54\)
\(\dfrac{4^2.25^2+32.125}{2^3.5^2}=\dfrac{2^4.5^4+2^5.5^3}{2^3.5^2}=\dfrac{2^3.5^2\left(2.5^2+2^2.5\right)}{2^3.5^2}\)
\(=2.5^2+2^2.5=2.25+4.5=50+20=70\)
Làm
\(\frac{4^2.25^2+32.125}{2^3.5^2}=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}=\frac{2^4.5^3\left(5+2\right)}{2^3.5^2}=2.5.7=70\)
\(\dfrac{4^2.25^2+32.125}{2^3.5^2}=\dfrac{2^4.5^4+2^5.5^3}{2^3.5^2}=\dfrac{2^3.5^2\left(2.5^2+2^2.5\right)}{2^3.5^2}=2.5^2+2^2.5=50+20=70\)