Tính tổng sau:S=\(\frac{10}{1.6}\)+\(\frac{10}{6.11}\)+......+\(\frac{10}{101.106}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 2(5/1.6 + 5/6.11 +.......+ 5/101.106)
S = 2( 1 - 1/6 + 1/6 - 1/11 +.....+ 1/101 - 1/106)
S = 2( 1 - 1/106)
S = 2 . 105/106
S = 105/53
k mk đi,mk mới bị trừ điểm!
1/2.S=5/(1.6)+5/(6.11)+...+5/(101.106)
1/2.S=1/1-1/6+1/6-1/11+...+1/101-1/106
1/2.S=1/1-1/106
1/2.S=105/106
S=105/53
\(A=\frac{10^2}{1\cdot6}+\frac{10^2}{6\cdot11}+...+\frac{10^2}{61\cdot66}=\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{61\cdot66}\right)\cdot20\)
\(=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{61}-\frac{1}{66}\right)\cdot20\)
\(=\left[\left(1-\frac{1}{66}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+...+\left(\frac{1}{61}-\frac{1}{61}\right)\right]\cdot20\)
\(=\left[\left(\frac{66}{66}-\frac{1}{66}\right)+0+...+0\right]\cdot20=\frac{65}{66}\cdot20=\frac{65\cdot20}{66}=\frac{65\cdot10}{33}=\frac{650}{33}\)
\(A=\frac{10^2}{1.6}+\frac{10^2}{6.11}+...+\frac{10^2}{61.66}\)
\(=10^2.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{61.66}\right)\)
\(=10^2.5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=500.\left(1-\frac{1}{66}\right)\)
\(=500.\frac{65}{66}\)
\(=\frac{16250}{33}\)
Tính S:
S=5.(\(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+...+\(\dfrac{5}{101.106}\))
S=5.(1-\(\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\))
S=5.(1-\(\dfrac{1}{106}\))
S=5.\(\dfrac{105}{106}\)
S=\(\dfrac{525}{106}\)
= 2.(5/1.6+5/6.11+.....+5/56.61)
= 2.(1-1/6+1/6-1/11+.....+1/56-1/61)
= 2.(1-1/61)
= 2.60/61 = 120/61
Tk mk nha
\(\frac{10}{1.6}+\frac{10}{6.11}+...+\frac{10}{56.61}\)
\(=10.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{56.61}\right)\)
\(=10.\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(=2\left(1-\frac{1}{61}\right)\)
\(=2.\frac{60}{61}\)
\(=\frac{120}{61}\)
2 phần dưới không liên quan gì đến tính chất trên
a) \(A=\frac{5-2}{2.5}+\frac{8-5}{5.8}+...+\frac{20-17}{17.20}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) \(B=5\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{106-101}{101.106}\right)\)
\(B=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{101}-\frac{1}{106}\right)\)
\(B=5.\left(1-\frac{1}{106}\right)=\frac{525}{106}\)
Ta có :
\(\frac{5}{1.6}+\frac{5}{6.11}+................+\frac{5}{\left(5.x+1\right).\left(5.x+6\right)}=\)\(\frac{50}{41}\)
=> \(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...............+\frac{1}{5.x+1}-\frac{1}{5.x+6}\) = \(\frac{50}{41}\)
=> \(1-\frac{1}{5.x+6}=\frac{50}{41}\)
=> \(\frac{1}{5.x+6}=\frac{-9}{41}\)................ mình ko tìm ra vì p/s kia ko có tử là 1
bạn xem lại đề bài giúp mình nha
\(.S=3.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{96.101}\right)\)
\(\Rightarrow S=3.\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{100}{101}\right)\)
\(S=\frac{60}{101}\)
\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+...+\frac{3}{96.101}\)
\(=3.\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)\)
\(=\frac{3}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(=\frac{3}{5}.\left(1-\frac{1}{101}\right)\)
\(=\frac{3}{5}.\frac{100}{101}\)
\(=\frac{60}{101}\)
\(S=2\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{101.106}\right)\)
\(S=2\left(1-\frac{1}{106}\right)\)
\(S=\frac{210}{106}=\frac{105}{53}\)
\(S=2.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{101.106}\right)\)
\(S=2.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-...-\frac{1}{101}+\frac{1}{101}-\frac{1}{106}\right)\)
\(S=2.\left[1+\left(\frac{-1}{6}+\frac{1}{6}\right)+\left(\frac{-1}{11}\frac{1}{11}\right)+...+\left(\frac{-1}{101}+\frac{1}{101}\right)-\frac{1}{106}\right]\)
\(S=2.\left[1+0+0+...+0-\frac{1}{106}\right]\)
\(S=2.\left[1-\frac{1}{106}\right]\)
\(S=2.\frac{105}{106}\)