Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{20}{1\cdot6}+\frac{20}{6\cdot11}+...+\frac{20}{51\cdot56}+\frac{20}{56\cdot61}\)
\(A=\frac{20}{5}\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{51}-\frac{1}{56}+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=4\cdot\left(1-\frac{1}{61}\right)\)
\(A=4\cdot\frac{60}{61}\)
\(A=\frac{240}{61}\)
\(A=\frac{20}{1.6}+\frac{20}{6.11}+...+\frac{20}{51.56}+\frac{20}{56.61}\)
\(A=\frac{20}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{51}-\frac{1}{56}+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=4.\left(1-\frac{1}{61}\right)\)
\(A=4.\frac{60}{61}=\frac{240}{61}\)
S = 2(5/1.6 + 5/6.11 +.......+ 5/101.106)
S = 2( 1 - 1/6 + 1/6 - 1/11 +.....+ 1/101 - 1/106)
S = 2( 1 - 1/106)
S = 2 . 105/106
S = 105/53
k mk đi,mk mới bị trừ điểm!
1/2.S=5/(1.6)+5/(6.11)+...+5/(101.106)
1/2.S=1/1-1/6+1/6-1/11+...+1/101-1/106
1/2.S=1/1-1/106
1/2.S=105/106
S=105/53
\(S=2\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{101.106}\right)\)
\(S=2\left(1-\frac{1}{106}\right)\)
\(S=\frac{210}{106}=\frac{105}{53}\)
\(S=2.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{101.106}\right)\)
\(S=2.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-...-\frac{1}{101}+\frac{1}{101}-\frac{1}{106}\right)\)
\(S=2.\left[1+\left(\frac{-1}{6}+\frac{1}{6}\right)+\left(\frac{-1}{11}\frac{1}{11}\right)+...+\left(\frac{-1}{101}+\frac{1}{101}\right)-\frac{1}{106}\right]\)
\(S=2.\left[1+0+0+...+0-\frac{1}{106}\right]\)
\(S=2.\left[1-\frac{1}{106}\right]\)
\(S=2.\frac{105}{106}\)
Ta có :
\(\frac{5}{1.6}+\frac{5}{6.11}+................+\frac{5}{\left(5.x+1\right).\left(5.x+6\right)}=\)\(\frac{50}{41}\)
=> \(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...............+\frac{1}{5.x+1}-\frac{1}{5.x+6}\) = \(\frac{50}{41}\)
=> \(1-\frac{1}{5.x+6}=\frac{50}{41}\)
=> \(\frac{1}{5.x+6}=\frac{-9}{41}\)................ mình ko tìm ra vì p/s kia ko có tử là 1
bạn xem lại đề bài giúp mình nha
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{46.51}\)
\(=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{46.51}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{51}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{51}\right)\)
\(=\frac{1}{5}.\left(\frac{51}{51}-\frac{1}{51}\right)\)
\(=\frac{1}{5}.\frac{50}{51}\)
\(=\frac{10}{51}\)
Chúc bạn học tốt !!!
\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(\Leftrightarrow B=\frac{3}{5}.\frac{100}{101}\)
\(\Leftrightarrow B=\frac{60}{101}\)
\(A=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}\right):5\)
\(A=\left(1-\frac{1}{501}\right):5\)
\(A=\frac{500}{501}:5=\frac{100}{501}\)
Ta có : \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)
\(\Rightarrow\) \(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}-\frac{1}{501}\right) \)
\(\Rightarrow\) \(A=\frac{1}{5}\left(1-\frac{1}{501}\right)\)
\(\Rightarrow\) \(A=\frac{1}{5}.\frac{501-1}{501}=\frac{1}{5}.\frac{500}{501}\)
\(\Rightarrow\) \(A=\frac{1.500}{5.501}=\frac{20}{1.501}=\frac{20}{501}\)
Vậy \(A=\frac{20}{501}\)
\(.S=3.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{96.101}\right)\)
\(\Rightarrow S=3.\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{100}{101}\right)\)
\(S=\frac{60}{101}\)
= 2.(5/1.6+5/6.11+.....+5/56.61)
= 2.(1-1/6+1/6-1/11+.....+1/56-1/61)
= 2.(1-1/61)
= 2.60/61 = 120/61
Tk mk nha
\(\frac{10}{1.6}+\frac{10}{6.11}+...+\frac{10}{56.61}\)
\(=10.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{56.61}\right)\)
\(=10.\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(=2\left(1-\frac{1}{61}\right)\)
\(=2.\frac{60}{61}\)
\(=\frac{120}{61}\)