Tìm các số nguyên a,b biết a-3/b-2=3/2 và a-b=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2)
\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)
Thay lại vào (1) ; (2) ta có :
\(\Leftrightarrow a=11-b=11-7=4\)
\(\Leftrightarrow c=3-b=3-7=-4\)
Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện )
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
1, a) Để 13/x-1 là số nguyên thì 13 chia hết cho x-1
Suy ra x-1 thuộc {1;-1;13;-13}
x thuộc {2;0;14;-12}
b)Để x+3/x-2 là số nguyên thì x+3 chia hết cho x-2
hay x-2+5 chia hết cho x-2
Vì x-2 chia hết cho x-2 nên 5 phải chia hết cho x-2
Suy ra x-2 thuộc {1;-1;5;-5}
x thuộc {3;1;7;-3}
c)Để x-2/5 là số nguyên thì x-2 chia hết cho 5
Suy ra x-2 = 5k (k thuộc Z)
x = 5k +2
Vậy....
2, a)Vì a/2 = 3/6
nên a.6 = 3.2
a.6 = 6
Suy ra a=1
Vậy a=1
b)Vì b/-2 = -8 /b nên b.b = -2 . (-8)
Suy ra b^2 = 16
b^2 = 4^2 hoặc b^2 = (-4)^2
Suy ra b =4 hoặc b= -4
Vậy...
c)Vì 3/c-5 = 4/c+2 nên -4.(c-5) = 3.(c+2)
hay -4.c + 20 = 3c + 6
20 - 6 = 3c + 4c
14 = 7c
Suy ra c=2
Vậy....
d)Vì a/3 = 6/b = c/10 = -1/2
nên c/10 = -1/2 nên 2.c = -10 Suy ra c=-5
Suy ra a/3 = 6/b = -5/10 = -1/2
Ta có: 6/b = -1/2 nên -1.b = 12 Suy ra b = -12
a/3 = -1/2 nên 2a = -3 Vì 3 không chia hết cho 2 nên a không là số nguyên
Vậy....
3,Vì a/b=b/c=c/a nên a/b=b/c=c/a=a+b+c/c+b+a =1
Suy ra a=b=c
Vậy....
P/s:Áp dụng công thức a/b=b/a=a+b/b+a
4,Vì x/5=-3/y nên -15 = xy
Suy x và y là ước của -15
Ta có bẳng sau
w | 1 | -1 | 3 | -3 | -15 | 15 |
| ||||||||||||||||||
y |
Vậy....(Cái bảng hơi lộn xộn 1 xíu nhé!Xin lỗi)
thế a+b+c=4 vào a+b+c+d=1 => 4+d=1 => d=-3
thế a+b+d=3 vào a+b+c+d=1 => 3+c=1 => c=-2
thế c=-2 và d=-3 vào a+c+d=2 => a-3-2=2 => a=7
thế a=7 và c=-2 vào a+b+c=4 => 7+b-1=4 => b=-2
Ta có; \(\frac{a-3}{b-2}=\frac{3}{2}\)và a-b=4
\(\Rightarrow\frac{a-3}{3}=\frac{b-2}{2}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a-3}{3}=\frac{b-2}{2}=\frac{\left(a-3\right)-\left(b-2\right)}{3-2}=\frac{a-3-b+2}{1}=\frac{4-1}{1}=3\)
\(\Rightarrow\hept{\begin{cases}a=3.3+3=12\\b=3.2+2=8\end{cases}}\)
\(\frac{a-3}{b-2}=\frac{3}{2}\)
\(\text{Ta có :}\)
\(a-b=4\)
\(\Leftrightarrow a=b+4\)
\(\text{Thay a = b + 4 vào đẳng thức }\frac{a-3}{b-2}=\frac{3}{2}\text{ ta có :}\)
\(\frac{b+4-3}{b-2}=\frac{3}{2}\)
\(\Leftrightarrow\frac{b+1}{b-2}=\frac{3}{2}\)
\(\Leftrightarrow\left(b+1\right).2=\left(b-2\right).3\)
\(\Leftrightarrow2b+2=3b-6\)
\(\Leftrightarrow2b-3b=-6-2\)
\(\Leftrightarrow-1b=-8\)
\(\Leftrightarrow b=8\)
\(\text{Thay b = 8 vào đẳng thức a = b + 4 ta có :}\)
\(\Leftrightarrow a=8+4\)
\(\Leftrightarrow a=12\)