OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho A=1/1.2+1/3.4+1/5.6+.....+1/101+102
B=1/52.102+1/53.101+1/54.100+.....+1/101.53+102.52
Chứng minh rằng :A/B là số nguyên
+ \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{101}-\frac{1}{102}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{102}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{102}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{102}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{102}\right)-\left(1+\frac{1}{2}+...+\frac{1}{51}\right)\)
\(A=\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{102}\)
+ \(154B=\frac{52+102}{52\cdot102}+\frac{53+101}{53\cdot101}+...+\frac{102+52}{102\cdot52}\)
\(154B=\frac{1}{52}+\frac{1}{102}+\frac{1}{53}+\frac{1}{101}+...+\frac{1}{101}+\frac{1}{53}+\frac{1}{102}+\frac{1}{52}\)
\(154B=2\left(\frac{1}{52}+\frac{1}{53}+...+\frac{1}{102}\right)\)
\(B=\frac{1}{77}\left(\frac{1}{52}+\frac{1}{53}+...+\frac{1}{102}\right)\)
Do đó : \(\frac{A}{B}=\frac{1}{\frac{1}{77}}=77\) là số nguyên
thank you bạn Y nha
kết bạn vs mình ik
cho A=1/1.2+1/3.4+1/5.6+......+1/101.102
B=1/52.102+1/53.102+1/54.100+......+1/101.53+1/102.52
cmr A/B là số nguyên
AI NHANH MÌNH K CHO!
Mình mới lớp 4 mà bạn tra mạng sẽ có đầy bài dạng này và y như thế này.
1)Trên cùng một nửa mặt phẳng bờ chứa tỉa Ox. Vẽ 2 tỉa Ox và Oz sao cho góc xOy=30 độ, gíc xOz=150 độ
A) tia nài nằm giữa 2 tỉa còn lại? Vì sao?
B) Tính góc yOz
Vẽ tỉa Oa là tia đối của tia Ox. Tia Oz có là tia phân giác của góc aOy ko? Vì sao?
2) cho 10 tỉa chồng gốc. Hỏi có bao nhiêu góc(khác góc bẹt) có trên hình.
3)
Cho A=1/1.2+1/3.4+1/5.6+...+1/101.102
B=1/52.102+1/53.101+1/54.100+...+1/101.53+1/102. 52
Chứng minh rằng A/B là số nguyên
4)
Cho C=3/4+8/9+15/16+...+2499/2500
tính tỉ số \(\dfrac{A}{B}\) biết A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{101.102}\) và B=\(\dfrac{1}{52.102}\)+\(\dfrac{1}{53.101}\)+...+\(\dfrac{1}{102.52}\)+\(\dfrac{2}{77.154}\)
khó nhìn lắm ạ
Đặt A=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{101.102}\)
B=\(\frac{1}{52.102}+\frac{1}{53.101}+...+\frac{1}{102.52}\)
CMR: A/B thuộc Z
a) Chứng tỏ rằng \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
b) Đặt A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2013+2014}\); Đặt B = \(\frac{1}{1008.2014}+\frac{1}{1009.2013}+...+\frac{1}{2014.1008}\)
Chứng tỏ rằng \(\frac{A}{B}\)là số nguyên
a) Chứng tỏ rằng
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
b) Đặt A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\); B = \(\frac{1}{1008.2014}+\frac{1}{1009.2013}+...+\frac{1}{2014.1008}\)
cho A=1/1.2+1/3.4+1/5.6+....+1/2021.2022 và B=1011+1010/1012+1009/1013+1008/1014+...+2/2020+1/2021 Chứng minh rằng : B/A là số nguyên
A=1/1.2+1/3.4+1/5.6+...+1/99.100 = ? B=2015/51+2015/52+2015/53+...+2015/100
Chứng minh rằng B/A là 1 số nguyên
+ \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{101}-\frac{1}{102}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{102}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{102}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{102}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{102}\right)-\left(1+\frac{1}{2}+...+\frac{1}{51}\right)\)
\(A=\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{102}\)
+ \(154B=\frac{52+102}{52\cdot102}+\frac{53+101}{53\cdot101}+...+\frac{102+52}{102\cdot52}\)
\(154B=\frac{1}{52}+\frac{1}{102}+\frac{1}{53}+\frac{1}{101}+...+\frac{1}{101}+\frac{1}{53}+\frac{1}{102}+\frac{1}{52}\)
\(154B=2\left(\frac{1}{52}+\frac{1}{53}+...+\frac{1}{102}\right)\)
\(B=\frac{1}{77}\left(\frac{1}{52}+\frac{1}{53}+...+\frac{1}{102}\right)\)
Do đó : \(\frac{A}{B}=\frac{1}{\frac{1}{77}}=77\) là số nguyên
thank you bạn Y nha
kết bạn vs mình ik