Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
A = 1/(1.2) + 1/(3.4) + 1/(5.6) +....+ 1/(1997.1998) =
(1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 1997 - 1 / 1998) =
(1 + 1 / 2 + 1 / 3 + ... + 1998) - 2(1 / 2 + 1 / 4 + ... + 1 / 1998) =
(1 + 1 / 2 + 1 / 3 + ... + 1998) - (1 + 1 / 2 + ... + 1 / 999) =
1 / 1000 + 1 / 1001 + ... + 1 / 1998
2A = (1 / 1000 + 1 / 1001 + ... + 1 / 1998) + (1 / 1998 + 1 / 1997 + ... + 1 / 1000) =
(1 / 1000 + 1 / 1998) + (1 / 1001 + 1 / 1997) + ... + (1 / 1998 + 1 / 1000) =
2998*[1 / (1000*1998) + 1 / (1001*1997) + ... + 1 / (1998*1000)] = 2998B
=> A / B = 1499 nguyên
A = (1/1.2) + (1/3.4) + (1/5.6) +....+ ( 1/1997.1998)
ta có
1/1*2 = 1 - 1/2
1/3*4 = 1/3 - 1/4
...
1/1997*1998 = 1/1007 - 1/1998
bạn gộp lại tự giải tiếp nha
+ \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{101}-\frac{1}{102}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{102}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{102}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{102}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{102}\right)-\left(1+\frac{1}{2}+...+\frac{1}{51}\right)\)
\(A=\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{102}\)
+ \(154B=\frac{52+102}{52\cdot102}+\frac{53+101}{53\cdot101}+...+\frac{102+52}{102\cdot52}\)
\(154B=\frac{1}{52}+\frac{1}{102}+\frac{1}{53}+\frac{1}{101}+...+\frac{1}{101}+\frac{1}{53}+\frac{1}{102}+\frac{1}{52}\)
\(154B=2\left(\frac{1}{52}+\frac{1}{53}+...+\frac{1}{102}\right)\)
\(B=\frac{1}{77}\left(\frac{1}{52}+\frac{1}{53}+...+\frac{1}{102}\right)\)
Do đó : \(\frac{A}{B}=\frac{1}{\frac{1}{77}}=77\) là số nguyên
thank you bạn Y nha
kết bạn vs mình ik