tính tổng các số nghịch đảo của các số sau : 2, 6 , 12 , 20 , 30 , 42 , 56 , 72 , 90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}+\frac{109}{110}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}+1-\frac{1}{110}\)
\(=10-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\right)\)
\(=10-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\right)\)
\(=10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\right)\)
\(=10-\left(1-\frac{1}{10}\right)\)
\(=\frac{91}{10}\)
a, Tính :
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}+\frac{109}{110}\)
\(A=\frac{1}{2}+\frac{4}{6}+\frac{1}{6}+\frac{10}{12}+\frac{1}{12}+\frac{18}{20}+\frac{1}{20}+\frac{28}{30}+\frac{1}{30}+\frac{40}{42}+\frac{1}{42}+\frac{54}{56}+\frac{1}{56}\)
\(+\frac{70}{72}+\frac{1}{72}+\frac{88}{90}+\frac{1}{90}+\frac{108}{110}+\frac{1}{110}\)
2;6;12;20;30;42;56;72;90;110
moi so tu 2 den 6 la 4 don vi moi so tiep theo la cong them 2 don vi nhu 2+4=6;6+6=12....
nhu vay 5 so tiep theo cong them vao 110 la ra : so dau tien la: 22 ;24;26;28;30
vay 5 so do la 110 +22=132 ;132 +24 =156 ;156+26 =182;182+28=210 ;210+30=240
tong cac so :2+6+12+20+30+42+56+72+90+110+132+156+182+210+240=1328
ket qua la 1328
chuc ban hoc gioi nha
neu ban cam thay mh dung thi k cho mk nha cac ban !!!!!!! :))) ^^^
\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{38}{5}\)
không lẽ nào bằng nhau được đâu vì
\(\left(\frac{1}{30}+\frac{1}{42}\right)+\left(\frac{1}{56}+\frac{1}{72}\right)+\left(\frac{1}{90}+\frac{1}{110}\right)+\left(\frac{1}{132}+\frac{1}{156}\right)+\left(\frac{1}{182}+\frac{1}{210}\right)=\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\)
Hình như bn làm sai ấy. Chứ bài này sách của mk giải đc mà.
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
A=1/2+ 5/6 + 11/12 + 19/20 + 29 30 + 41/42 + 55/56 + 71/72 + 89/90
Các số nghịch đảo:
\(2\rightarrow\frac{1}{2};6\rightarrow\frac{1}{6};12\rightarrow\frac{1}{12};...;90\rightarrow\frac{1}{90}\)
Gọi A là tổng các số nghịch đảo
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\\ =\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\\ =1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\\ =1-\frac{1}{10}=\frac{9}{10}\)