K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm: 
\(mx_0+m=\dfrac{-1}{m}x_0+\dfrac{1}{m}\) (ĐK: \(m\ne0\))

\(m^2x_0+m^2=-x_0+1\)

\(x_0\left(m^2+1\right)=1-m^2\)

\(x_0=\dfrac{1-m^2}{m^2+1}\) (1)

Mà theo (d1): \(y_0=mx_0+m\) 

Suy ra: \(y_0=m.\dfrac{1-m^2}{m^2+1}+m\)
\(y_0=\dfrac{m-m^3+m^3+m}{m^2+1}\)

\(y_0=\dfrac{2m}{m^2+1}\) (2)

Thế (1) và (2) vào T ta được: 
\(T=\left(\dfrac{1-m^2}{m^2+1}\right)^2+\left(\dfrac{2m}{m^2+1}\right)^2\)

\(T=\dfrac{m^4-2m^2+1+4m^2}{m^4+2m^2+1}\)
\(T=1\)