CMR: với mọi số nguyên n thì giá trị biểu thức \(n^3+12n^2-n+6\) luôn chia hết cho 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ba số trên là ba số tự nhiên liên tiếp nên chia hết cho 6 ( Ví dụ : 1.2.3= 6 chia hết cho 6 )
\(\Rightarrow n^3-n⋮6\)
n^3 - n
= n( n^2 - 1 )
Xét 2 trường hợp :
1 . n là số chẵn
ð n( n^2 – 1 ) chia hết cho 2
2 . n là số lẽ
=> n^2 – 1 là số chẵn
=> n( n^2 – 1 ) chia hết cho 2
Vậy n^3 – n chia hết cho 2
Có n^3 – n = n( n^2 – 1 ) = n( n + 1 )( n – 1 )
Vì n , n + 1 và n – 1 là 3 số tự nhiên liên tiếp nên chia hết cho 3
=> n^3 – n chia hết cho 3
Vì n^3 – n cùng chia hết cho cả 3 và 2
=> n^3 – n chia hết cho 6
\(n^3+12n^2-n+6\)
\(=n\left(n^2-1\right)+12n^2+6\)
\(=n\left(n-1\right)\left(n+1\right)+12n^2+6\)
Ta thấy biểu thức này luôn chia hết cho 6 vì :
n(n-1)(n+1) chia hết cho 6 ( tích 3 số liên tiếp luôn chia hết cho 6)
12n2 và 6 luôn chia hết cho 6 với mọi n
Từ đó ta suy ra được tổng của 3 số chia hết cho 6 luôn chia hết cho 6
\(\Rightarrow\)đpcm
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2+n+6\)
\(=6n+6=6\left(n+1\right)⋮6\forall n\in Z\)
VT = x^2 + 5x - ( x^2 - x -6)
= x^2 + 5x - x^2 + x +6
= 6x +6 = 6.(x+1) chia hết cho 6 với mọi n là số nguyên