Cho tam giác ABC =tam giác DEF Tính chu vi của mỗi tam giác biết rằng AB=6cm AC=8cm và EF=10cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC=ΔDEIΔABC=ΔDEI
⇒AB=DE=5(cm)⇒AB=DE=5(cm) ( 2 cạnh tương ứng )
⇒BC=EI=8(cm)⇒BC=EI=8(cm) ( 2 cạnh tương ứng )
⇒AC=DI=6(cm)⇒AC=DI=6(cm) ( 2 cạnh tương ứng )
Chu vi của ΔABCΔABC là:
AB+BC+CA=5+8+6=19(cm)AB+BC+CA=5+8+6=19(cm)
Chu vi của ΔDEIΔDEI là:
DE+EI+DI=5+8+6=19(cm)DE+EI+DI=5+8+6=19(cm)
Vậy........
ΔABC=ΔDEf
⇒AB=DE=5(cm) ( 2 cạnh tương ứng )
⇒BC=EI=8(cm) ( 2 cạnh tương ứng )
⇒AC=DI=6(cm) ( 2 cạnh tương ứng )
Chu vi của ΔABCΔABC là:
AB+BC+CA=5+8+6=19(cm)
Chu vi của ΔDEIΔDEI là:
DE+EI+DI=5+8+6=19(cm)
Vậy........
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
ΔABC=DEFΔABC=DEF
=> AB=DE=3cm; BC=EF=5cm; AC=DF=4cm.
Diện tích ΔABCΔABC=Diện tích ΔDEFΔDEF=3+5+4=12 (cm)
Đ/S:12
ai k mik 3 cái mik k lại 9 cái
#mai
a/ Ta có: \(\widehat{B}\)=\(\widehat{F}\); AB = EF
Để tam giác ABC = tam giác DEF theo trường hợp cạnh góc cạnh, ta cần bổ sung điều kiện BC = FD
Khi đó. tam giác ABC = tam giác EFD (c.g.c)
b/ Ta có: tam giác ABC = tam giác EFD
=> AB = EF; BC = FD; AC = DE
Chu vi tam giác ABC = tam giác EFD
AB + BC + AC = EF + FD + DE = 5 + 6 + 6
= 17 (cm)
Vậy chu vi tam giác ABC=chu vi tam giác EFD = 17 cm
Tam giác ABC= DEF
=> AB=DE = 6 cm ;
AC = DF = 8 cm
BC = EF = 10cm
( kí hiệu C là chu vi của tam giác )
=> \(C_{\Delta ABC}=C_{\Delta DEF}=6+8+10=24\left(cm\right)\)