K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

Phương trình : \(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\)(ĐKXĐ: \(5\le x\le7\))

Xét vế trái : \(\left(1.\sqrt{7-x}+1.\sqrt{x-5}\right)^2\le\left(1^2+1^2\right)\left(7-x+x-5\right)\)

\(\Rightarrow\left(\sqrt{7-x}+\sqrt{x-5}\right)^2\le4\Rightarrow\sqrt{7-x}+\sqrt{x-5}\le2\)

(Áp dụng bất đẳng thức Bunhiacopxki)

Xét vế phải : \(x^2-12x+38=\left(x^2-12x+36\right)+2=\left(x-6\right)^2+2\ge2\)

Do đó : Phương trình tương đương với : \(\begin{cases}\sqrt{7-x}+\sqrt{x-5}=2\\x^2-12x+38=2\end{cases}\)\(\Rightarrow x=6\left(TM\right)\)

Vậy phương trình có nghiệm duy nhất x = 6

5 tháng 11 2018

\(VT^2\le2.\left(7-x+x-5\right)=2.2=4\Rightarrow VT\le2\)

Mà \(VP=x^2-12x+38=x^2-2.6.x+36+2=\left(x-6\right)^2+2\ge2\)

\(\Rightarrow VT\le VP\).Dấu "=" xảy ra khi \(x=6\)

5 tháng 11 2018

ĐKXĐ: \(\hept{\begin{cases}7-x\ge0\\x-5\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le7\\x\ge5\end{cases}\Leftrightarrow}5\le x\le7\)

Do khoảng cách các giá trị của x nhỏ nên ta thay lần lượt các giá trị x vào phương trình rồi chọn những giá trị nào thỏa mãn. Bước này dễ. Bạn tự làm. (mình lười quá rồi man))

10 tháng 8 2020

\(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\) (ĐKXĐ: \(5\le x\le7\))

Với \(5\le x\le7\) thì VT luôn lớn hơn 0

Áp dụng BĐT (a+b)2\(\le2\left(a^2+b^2\right)\). Dấu "\(=\)" xảy ra \(\Leftrightarrow a=b\) với VT ta có:

\(VT^2=\left(\sqrt{7-x}+\sqrt{x-5}\right)^2\le2\left(7-x+x-5\right)\)

\(\Leftrightarrow VT^2\le2.2=4\)

\(\Leftrightarrow0< VT\le2\) (1)

CÓ : VP\(=x^2-12x+38=\left(x-6\right)^2+2\ge2\forall x\)(2)

(1) và (2)\(\Rightarrow VT=VP=2\)

Dấu"\(=\)" \(\Leftrightarrow\left\{{}\begin{matrix}7-x=x-5\\x-6=0\end{matrix}\right.\Leftrightarrow x=6\left(t/m\right)\)

Kl: x\(=6\) là nghiệm của pt

NV
9 tháng 8 2020

ĐKXĐ: ...

Ta có:

\(VT=\sqrt{7-x}+\sqrt{x-5}\le\sqrt{2\left(7-x+x-5\right)}=2\)

\(VP=\left(x-6\right)^2+2\ge2\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{7-x}=\sqrt{x-5}\\x-6=0\end{matrix}\right.\) \(\Rightarrow x=6\)

20 tháng 9 2016

câu d tách hđt r đánh giá . VP=(x-6)^2+2>=2 còn VP <=2 =>....
câu c tương tự 
câu b c bình phương oặc đặt ẩn :3

a)

\(\sqrt{4x-4}-\sqrt{9x-9}+\sqrt{25x-25}=4+\sqrt{16x-16}\\ \Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}+5\sqrt{x-1}=4\\ \Leftrightarrow0\sqrt{x-1}=4\\ \Rightarrow kh\text{ô}ng\:c\text{ó}\:gi\text{á}\:tr\text{ị}\:x\:th\text{õa}\:m\text{ãn}\)

b)

\(•\sqrt{7-x}+\sqrt{x-5}\le\sqrt{2.\left(7-x+x-5\right)}=2\\ •x^2-12x+38=\left(x-6\right)^2+2\ge2\)

ta thấy \(VT\le2\:v\text{à}\:VP\ge2\) nên \(VT=VP=2\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}7-x=x-5\\x-6=0\end{matrix}\right.\Rightarrow x=6\)

vậy nghiệm của phương trình trên là x=6

6 tháng 10 2019

pt <=>\(\sqrt{6x^2-12x+7}-\left(x^2-2x\right)=0\)

<=>\(\sqrt{6\left(x^2-2x+1\right)+1}-\left(x^2-2x+1\right)+1=0\)

<=> \(\sqrt{6\left(x-1\right)^2+1}-\left(x-1\right)^2=-1\)

Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\)

\(\sqrt{6a+1}-a=-1\)

<=> \(\sqrt{6a+1}=a-1\)

=> \(6a+1=a^2-2a+1\)

<=> \(a^2-2a-6a+1-1=0\)

<=>\(a^2-8a=0\) <=>a(a-8)=0

=> \(\left[{}\begin{matrix}a=0\\a=8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^2=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\left(ktm\right)\\x=2\sqrt{2}+1\left(tm\right)\\x=1-2\sqrt{2}\left(tm\right)\end{matrix}\right.\)

9 tháng 10 2019

阮芳邵族 bạn có thể thấy trong căn luôn > hoặc = 1 => bt trong căn >0

=>luôn t/m với mọi x.

13 tháng 7 2017

b) đặt \(\sqrt{3x+1}=a\)(\(a\ge0\))

\(PT\Leftrightarrow\dfrac{a^2-1}{\sqrt{a^2+9}}+1=a\)

\(\Leftrightarrow\left(a-1\right)\left(1-\dfrac{a+1}{\sqrt{a^2+9}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+1=\sqrt{a^2+9}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)(tm)

c) bunyalovsky:

\(VT^2\le2\left(7-x+x-5\right)=4\)

\(\Leftrightarrow VT\le2\)

\(VF=\left(x-6\right)^2+2\ge2\)

Dấu = xảy ra khi x=6