K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

\(^SABC=\frac{1}{2}BH.AC\)

\(^SADC=\frac{1}{2}DH.AC\)

\(^SABCD=^SABC+^SADC=\frac{1}{2}BH.AC+\frac{1}{2}DH.AC\)

\(=\frac{1}{2}\left(BH+DH\right).AC=\frac{1}{2}BD.AC\)

Tôi chỉ biết vậy thôi chứ tôi mới lớp 6 ề!

22 tháng 7 2017

Mik kb nha

30 tháng 3 2019

Gợi ý: Kẻ AH và CK vuông góc với BD

19 tháng 12 2021

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình

=>EH//BD và EH=BD/2(1)

Xét ΔBCD có 

F là tđiểm của BC

G là tđiểm của CD

Do đó: FG là đường trung bình

=>FG//BD và FG=BD/2(2)

Xét ΔADC có 

H là tđiểm của AD

G là tđiểm của CD

Do đó: GH là đường trung bình

=>GH⊥EH(3)

Từ (1), (2) và (3) suy ra EFGH là hình chữ nhật

19 tháng 12 2021

bạn ơi lm giúp mk phần b nx đc ko

 

7 tháng 1 2018


30 tháng 5 2017

Phương pháp:

Sử dụng các công thức diện tích tam giác  và công thức Cosin

Cách giải:

Ta có: 

Gọi I là tâm đường tròn ngoại tiếp tam giác BCD.

Do AB = AC = AD 

Thể tích tứ diện ABCD là 

Chọn D.

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Lời giải:
Vận dụng bổ đề $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:

$S_{ABCD}=S_{OAB}+S_{OBC}+S_{ODC}+S_{AOD}$

$=\frac{1}{2}.OA.OB.\sin \widehat{AOB}+\frac{1}{2}.OB.OC.\sin \widehat{BOC}+\frac{1}{2}.OD.OC.\sin \widehat{DOC}+\frac{1}{2}.OA.OD.\sin \widehat{AOD}$

$=\frac{1}{2}.OA.OB\sin 60^0+\frac{1}{2}.OB.OC.\sin 120^0+\frac{1}{2}.OD.OC\sin 60^0+\frac{1}{2}.OA.OD.\sin 120^0$

$=\frac{\sqrt{3}}{4}(OA.OB+OB.OC+OC.OD+OD.OA)$

$=\frac{\sqrt{3}}{4}(AC.BD)=\frac{\sqrt{3}}{4}.4.5=5\sqrt{3}$ (cm vuông)

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Hình vẽ: