Chứng minh : Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ có thể đưa ra ví dụ thôi chứ đây đã là kiến thức cơ bản r nhé bn.
Áp dụng công thức
- Tất cả các số trong 1 tổng đều chia hết cho cùng 1 số thì cả tổng đó sẽ chia hết cho số đó , chỉ cần 1 số ko chia hết thì cả tổng đó cũng sẽ ko chia hết
Theo bài ra ta có :
a = m.k ; b = m.n; a + b + c = m.d (k; n; d \(\in\) Z)
⇒ c = m.d - (a+b)
⇒a + b = m.k + m.n = m(k+n)
Thay a + b = m(k+n) vào biểu thức c = m.d - (a+b) ta có:
c = m.d - m(k+n)
c = m.( d-k-n) Vì d,k,n \(\in\) Z nên => c ⋮ m (đpcm)
a chia hết cho m => a =mq
b không chia hết cho m => b =m.p+r với r < m
=>a+b =mq+mp+r =m(q+p) +r => a+b khoog chia hết cho m
ta có một phép tính ví dụ 2CH 2;4CH2 mà3 KC2 nên2c4c3KCm
a chia hết cho m=> a =m.q
b chia hết cho m => b =m.p
=>a+b =mq+mp = m(q+p) chia hết cho m