Cho hình vuông ABCD. Trên tia đối tia của CD lấy điểm N. Đường thẳng AN cắt cạnh BC tại M. CMR:
a. AB2 = BM . DN
b. \(\dfrac{1}{AD^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại B và ΔADN vuông tại D có
AB=AD
góc BAM=góc DAN
=>ΔABM=ΔADN
=>AM=AN
=>ΔAMN vuông cân tại A
b: 1/AM^2+1/AE^2
=1/AN^2+1/AE^2
=1/AD^2 ko đổi
a,\(\Delta ABM\infty\Delta NDA\left(g.g\right)\Rightarrow\frac{AB}{ND}=\frac{BM}{DA}\Rightarrow AB^2=BM.DN\) (vì AB = AD)
b, Ta có: \(\frac{NM}{NA}=\frac{MC}{AD}\Rightarrow\frac{AD}{AN}=\frac{MC}{MN}\)
\(\frac{CN}{AB}=\frac{MN}{AM}\Rightarrow\frac{CN}{AD}=\frac{MN}{AM}\Rightarrow\frac{AD}{AM}=\frac{CN}{MN}\)
Vậy \(\left(\frac{AD}{AM}\right)^2+\left(\frac{AD}{AN}\right)^2=\left(\frac{CN}{MN}\right)^2+\left(\frac{MC}{MN}\right)^2=\frac{MC^2+CN^2}{MN^2}=1\)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)