Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ đường thẳng vuông góc với AN cắt CD tại Q
Ta có: \(\angle MAQ+\angle MCQ=90+90=180\Rightarrow AMCQ\) nội tiếp
\(\Rightarrow\angle AMQ=\angle ACQ=45\) mà \(\Delta MAQ\) vuông tại A
\(\Rightarrow\Delta MAQ\) vuông cân tại A \(\Rightarrow AM=AQ\)
Áp dụng hệ thức lượng vào tam giác vuông \(QAN\) có \(AD\bot NQ\)
\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AQ^2}+\dfrac{1}{AN^2}\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
Do I là trực tâm của tam giác KAB nên K, I, H thẳng hàng.
Tứ giác AMIH nội tiếp nên \(\widehat{MHI}=\widehat{MAI}\).
Tương tự, \(\widehat{NHI}=\widehat{NBI}\).
Lại có \(\widehat{MAI}=\widehat{NBI}=90^o-\widehat{AKB}\) nên \(\widehat{MHI}=\widehat{NHI}\).
Vậy HK là phân giác của góc MHN.