Tìm các cặp số nguyên x, y thỏa mãn : 2xy+1=x2+x+x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4y^2=x^2y^2-2xy\)
\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)
\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)
\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)
\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)
Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:
TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)
TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)
Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)
\(x-y+2xy=3\)
\(\Rightarrow2x-2y+4xy=6\)
\(\Rightarrow2x-2y+4xy-1=5\)
\(\Rightarrow\left(2x+4xy\right)-\left(2y+1\right)=5\)
\(\Rightarrow2x\left(2y+1\right)-1\left(2y+1\right)=5\)
\(\Rightarrow\left(2x-1\right)\left(2y+1\right)=5\)
\(x-y+2xy=3\)
\(\Leftrightarrow2\left(x-y+2xy\right)=2\times3\)
\(\Leftrightarrow2x-2y+4xy=6\)
\(\Leftrightarrow2x-2y+4xy-1=5\)
\(\Leftrightarrow\left(2x-4xy\right)-\left(2y+1\right)=5\)
\(\Leftrightarrow2x\left(2y+1\right)-\left(2y+1\right)=5\)
\(\Leftrightarrow\left(2x-1\right)\left(2y+1\right)=5\)
Bạn tự lập bảng để tìm nghiệm nhé
=>x(2y+1)-3y-1,5=2,5
=>(y+0,5)(2x-3)=2,5
=>(2y+1)(2x-3)=5
=>\(\left(2x-3;2y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(1;-3\right);\left(-1;-1\right)\right\}\)
\(2xy+x-3y=4\)
\(\Leftrightarrow4xy+2x-6y=8\)
\(\Leftrightarrow4xy+2x-6y-3=5\)
\(\Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+1\right)=5\)
2x-3 | -5 | -1 | 1 | 5 |
2y+1 | -1 | -5 | 5 | 1 |
x | -1 | 1 | 2 | 4 |
y | -1 | -3 | 2 | 0 |
Vậy pt có các cặp nghiệm nguyên \(\left(x;y\right)=\left(-1;-1\right);\left(1;-3\right);\left(2;2\right);\left(4;0\right)\)