Cho điểm M nằm trong tam giác ABC. Vẽ các điểm E, D, F lần lượt là hình chiếu của M lên AB, CB, AC. Chứng minh : MF + MD + MF < MA +MB + MC.
nhanh len nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔMAB có MD/DA=ME/EB
nên DE//AB
=>DE/AB=MD/MA=1/3
Xét ΔMAC có MF/MC=MD/MA
nên FD//AC
=>FD/AC=MF/MC=1/3
Xét ΔMBC có ME/EB=MF/FC
nên EF//BC
=>EF/BC=MF/MC=1/3
=>DE/AB=FD/AC=EF/BC
=>ΔDEF đồng dạngvới ΔABC
Gọi G là đỉnh thứ tư của hình bình hành KMIG. Giao điểm của MG và IK là N.
Do tứ giác KMIG là hình bình hành nên MI = KG và ^MKG + ^KMI = 1800 hay ^MKG + ^EMD = 1800
Ta có: \(\frac{MI}{BC}=\frac{MK}{AC}\). Do MI = KG nên \(\frac{KG}{BC}=\frac{MK}{AC}\)
Xét tứ giác CDME có: ^CDM = ^CEM = 900 => ^ECD + ^EMD = 1800. Mà ^MKG + ^EMD = 1800 (cmt)
Nên ^ECD = ^MKG hay ^ACB = ^MKG
Xét \(\Delta\)ABC và \(\Delta\)MGK có: \(\frac{GK}{BC}=\frac{MK}{AC}\); ^ACB = ^MKG => \(\Delta\)ABC ~ \(\Delta\)MGK (c.g.c)
=> ^BAC = ^GMK và \(\frac{MG}{AB}=\frac{MK}{AC}\)
Lại có: \(\frac{MK}{AC}=\frac{ML}{AB};\frac{MG}{AB}=\frac{MK}{AC}\)(cmt) => \(\frac{ML}{AB}=\frac{MG}{AB}\)=> ML = MG
Ta thấy: Tứ giác AFME có ^AFM = ^AEM = 900 => ^FAE + ^FME = 1800 . Mà ^FAE = ^BAC = ^GMK (cmt)
Nên ^GMK + ^FME = 1800 => G;M;F thẳng hàng. Hay G;M;I thẳng hàng
Mặt khác: N là trung điểm KI và MG (T/c hbh) => Điểm M nằm trên trung tuyến LN của \(\Delta\)IKL (1)
MG = ML; MN = 1/2.MG (cmt) => MN=1/2.ML (2)
Từ (1) và (2) => M là trọng tâm của \(\Delta\)IKL (đpcm).
Lời giải:
a/ Trên tia đối của tia $MA$ lấy $K$ sao cho $MA=MK$
Dễ thấy $\triangle BMA = \triangle CMK$ (c.g.c)
$\Rightarrow AB=CK$ và $\widehat{B_1}=\widehat{C_1}$
Mà 2 góc này ở vị trí so le trong nên $AB\parallel CK$
Mà $AB\perp AC\Rightarrow CK\perp AC$
Xét tam giác $BAC$ và $KCA$ có:
$CA$ chung
$AB=CK$ (cmt)
$\widehat{BAC}=\widehat{KCA}=90^0$
$\Rightarrow \triangle BAC=\triangle KCA$ (c.g.c)
$\Rightarrow BC=KA$
$\Rightarrow BC:2=KA:2$ hay $BM=AM$ (đpcm)
b. Tam giác $MBA$ cân tại $M$ (do $AM=BM$) nên đường trung tuyến $MF$ đồng thời là đường cao ứng với cạnh đáy $AB$
$\Rightarrow MF\perp AB$
c. Vì $MF\perp AB$ nên $S_{ABM}=MF.AB:2$
$S_{ABC}=CA.AB:2$
Mà $2S_{ABM}=S_{ABC}$ nên $MF.AB=CA.AB:2$
$\Rightarrow MF=AC:2(1)$
Xét tam giác vuông $HAC$ có trung tuyến $HE$. Ứng dụng kết quả của phần a: Tam giác vuông $BAC$ có trung tuyến AM bằng $MB$ và bằng 1 nửa cạnh huyền. Khi đó $HE=AC:2(2)$
Từ $(1);(2)\Rightarrow HE=MF$
b. Do tứ giác MDBE nội tiếp (cmt) => \(\widehat{MBE}=\widehat{MBC}=\widehat{MDE}=\frac{1}{2}sđ\widebat{MC}\)(1)
Vì MD \(\perp\)AB tại D (gt) => \(\widehat{MDA}=90^o\)
MF \(\perp\)AC tại F (gt) => \(\widehat{MFA}=90^o\)
Xét tứ giác ADMF có: \(\widehat{MDA}+\widehat{MFA}=90^o+90^o=180^o\)=> tứ giác ADMF nội tiếp (dhnb)
=> \(\widehat{MDF}=\widehat{MAF}=\widehat{MAC}=\frac{1}{2}sđ\widebat{MC}\)(2)
Từ (1) và (2) => \(\widehat{MDE}=\widehat{MDF}\)=> D, E, F thẳng hàng (2 góc có cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau)
* Ta có: tứ giác MEFC nội tiếp (cmt) => \(\widehat{EFM}=\widehat{ECM}=\frac{1}{2}sđ\widebat{EM}\)\(\Leftrightarrow\widehat{DFM}=\widehat{BCM}\)(3)
tứ giác MDBE nội tiếp (cmt) => \(\widehat{MDE}=\widehat{MBE}=\frac{1}{2}sđ\widebat{ME}\)\(\Leftrightarrow\widehat{MDF}=\widehat{MBC}\)(4)
Từ (3) và (4) => \(\Delta MDF\)đồng dạng với \(\Delta MBC\)(g.g) => \(\frac{MD}{MB}=\frac{MF}{MC}\Leftrightarrow MB\times MF=MD\times MC\)(đpcm)
c. Nối A với M, B với M
Ta có: \(\widehat{AMB}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(5)
Do tứ giác MEFC nội tiếp => \(\widehat{FME}=\widehat{FCE}=\frac{1}{2}sđ\widebat{EF}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(6)
Từ (5) và (6) => \(\widehat{AMB}=\widehat{FME}\)(7)
lại có: tứ giác ADMF nội tiếp (cmt) => \(\widehat{MAD}=\widehat{MFD}=\frac{1}{2}sđ\widebat{MD}\Leftrightarrow\widehat{MAB}=\widehat{MFE}\)(8)
từ (7) và (8) => \(\Delta ABM\)đồng dạng với \(\Delta FEM\)(g.g) => \(\frac{AB}{FE}=\frac{AM}{FM}\Leftrightarrow\frac{AB}{AM}=\frac{FE}{FM}\Leftrightarrow\frac{2\times AI}{AM}=\frac{2\times FK}{FM}\Leftrightarrow\frac{AI}{AM}=\frac{FK}{FM}\)(9)
Lại có: \(\widehat{MAD}=\widehat{MFD}\)(CMT) => \(\widehat{MAI}=\widehat{MFK}\)(10)
Từ (9) và (10) => \(\Delta MAI\)đồng dạng với \(\Delta MFK\)(c.g.c) => \(\widehat{IMA}=\widehat{KMF}\)(11)
Ta có: \(\widehat{MID}\)là góc ngoài tại đỉnh I của \(\Delta MAI\)=> \(\widehat{MID}=\widehat{MAI}+\widehat{IMA}\)
Tương tự: \(\widehat{MKD}\)là góc ngoài tại đỉnh K của \(\Delta MFK\)=> \(\widehat{MKD}=\widehat{MFK}+\widehat{KMF}\)
Từ (10) và (11) => \(\widehat{MID}=\widehat{MKD}\)=> Tứ giác MDIK là tứ giác nội tiếp (DHNB) => \(\widehat{IDM}+\widehat{IKM}=180^o\)(Hệ quả)
Mà \(\widehat{IDM}=\widehat{ADM}=90^o\)=> \(\widehat{IKM}=90^o\)<=> MK vuông góc với KI (ĐPCM)