tìm x,y,z biết:
x/3=6/y=z/10 và x+y+z=7+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x và y tỉ lệ nghịch với 6 và 5
nên 6x=5y
=>x/5=y/6
y và z tỉ lệ nghịch với 4 và 3
nên 4y=3z
=>y/3=z/4
=>x/5=y/6=z/8=(x+y+z)/(5+6+8)=38/19=2
=>x=10; y=12; z=16
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)
Ta có: x(x+y+z)=(-5) (1)
y(x+y+z)=9 (2)
z(x+y+z)=5 (3)
\(\Rightarrow\) x(x+y+z) + y(x+y+z)+z(x+y+z)=-5+9+5
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Leftrightarrow\left(x+y+z\right)^2=9=3^2=\left(-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=3\left(4\right)\\x+y+z=-3\left(5\right)\end{matrix}\right.\)
+ Với x+y+z=3 thì:
Từ (1) và (4) \(\Rightarrow\) x=\(\frac{-5}{3}\)
Từ (2) và (4) \(\Rightarrow\) y=3
Từ (3) và (4) \(\Rightarrow z=\frac{5}{3}\)
+ Với x+y+z=-3
Từ (1) và (5) \(\Rightarrow x=\frac{5}{3}\)
Từ (2) và (5) \(\Rightarrow y=-3\)
Từ (3) và (5) \(\Rightarrow z=\frac{5}{-3}\)
Vậy: \(\left(x;y;z\right)\in\left\{\left(\frac{-5}{3};3;\frac{5}{3}\right);\left(\frac{5}{3};-3;\frac{5}{-3}\right)\right\}\)
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài
Khi em các em viết đề bài trên hỏi đáp của Olm thì viết bằng công thức toán học góc trái màn hình, có biểu tượng \(\Sigma\). Như vậy sẽ giúp cộng đồng Olm hiểu đúng đề bài và trợ giúp các em được tốt nhất.
Cảm ơn các em đã đồng hành cùng Olm.
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)
nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)
Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)
nên \(\dfrac{y}{5}=\dfrac{z}{8}\)
hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
mà 2x-5y+2z=100
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)
Lại có: \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\) \(\left(2\right)\)
Kết hợp ( 1 ) và ( 2 ) ta có: \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)
⇒ \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)
⇒ \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)
⇒ \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)