Chúc mọi người năm mứi vui vẻ :3
C/m bất đẳng thức Bunhiacopxki
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cảm ơn bạn nhiều lắm !!! Mình cũng chúc bạn năm mới vui vẻ nha !
cảm ơn bạn và chúc bạn năm mới vui vẻ , luôn luôn tươi trẻ nhé
BĐT Bunhiacopxki:
Áp dụng cho 6 số(1,1,1,a,b,c)
\(\left(1^2+1^2+1^2\right).\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2\)
Chứng minh:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right).\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2axby+b^2y^2\le a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Leftrightarrow2axby\le a^2y^2+b^2x^2\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)( đpcm )