K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Câu hỏi của thanh ngọc - Toán lớp 9 | Học trực tuyến

10 tháng 1 2017

a/ a2 + b2 + c2 \(\ge\)ab + bc + ca

<=> 2(a2 + b2 + c2) \(\ge\)2(ab + bc + ca)

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2 \(\ge0\)

<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (đúng)

=> ĐPCM

b/ a2 + b2 + c2 \(\ge\) 2ab - 2ac + 2bc

<=> a2 + b2 + c+ 2( - ab + ac - bc)\(\ge\) 0

<=> (a - b + c)2 \(\ge0\)(đúng)

=> ĐPCM

20 tháng 8 2016

Giả thiết đề bài phải cho \(x^2+y^2+z^2\le3\) mới đúng.

Đặt \(m=x+y+z\)  thì \(m^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\le3+2\left(xy+yz+zx\right)\)

                                            \(\le3+2\left(x^2+y^2+z^2\right)\le3+3.2=9\)

\(\Rightarrow m^2\le9\Rightarrow-3\le m\le3\) (1) 

Lại có ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx\le\frac{m^2}{3}\le\frac{9}{3}=3\) (2)

Từ (1) và (2) suy ra \(x+y+z+xy+yz+zx\le6\) (đpcm)

12 tháng 9 2019

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)  ( 1 )

\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)     ( 2 )

\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 ) 

( Dấu " = " xảy ra khi x = y ) 

Chúc bạn học tốt !!!

13 tháng 3 2019

bé hơn hoặc bằng 15 nha bn

13 tháng 3 2019

bé hơn hoặc bằng 11 nha bn

bn làm ko đc thì đừng ns

thầy mik làm đc ra rồi

nhưng bắt mik làm lại thôi bn à

1 tháng 10 2019

\(2\left(x^2+y^2+z^2+xy+yz+xz\right)=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)

\(=\left(3-x\right)^2+\left(3-y\right)^2+\left(3-z\right)^2\)

\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)

\(=9+x^2+y^2+z^2\)

Dễ dàng CM được \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)

=>\(2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge12\)

=> dpcm

2 tháng 10 2019

Ta có: \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\)

\(=2x^2+2y^2+2z^2+2xy+2yz+2xz\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\)

\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)(1)

Mà \(x+y+z=3\Rightarrow\hept{\begin{cases}x+y=3-z\\y+z=3-x\\x+z=3-y\end{cases}}\)

\(\Rightarrow\left(1\right)=\left(3-z\right)^2+\left(3-x\right)^2+\left(3-y\right)^2\)

\(=9-6z+z^2+9-6x+x^2+9-6y+y^2\)

\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)

\(=9+x^2+y^2+z^2\)

Áp dụng BĐT Cauchy cho 3 số:

\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{3^2}{3}=3\)

\(\Rightarrow9+x^2+y^2+z^2\ge12\)

hay \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\ge12\)

\(\Leftrightarrow x^2+y^2+z^2+xy+yz+xz\ge6\left(đpcm\right)\)