Cho \(\Delta ABC\) vuông tại A , kẻ phân giác AD của \(\Delta ABC\) ( D thuộc BC )
CMR : \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có AD là phân giác góc BAC thì \(\widehat{BAD}=\widehat{EAD}=\frac{60^0}{2}=30^0\)
hình vẽ ko đc đẹp thông cảm
ta kẻ \(DE\\ AB;E\in AC\)
\(\Rightarrow\frac{EC}{AC}=\frac{DE}{AB}\)(hệ quả của đlý Talets nhé)
\(DE\\ AB\Rightarrow\widehat{AED}=180^0-\widehat{BAC}=180^0-60^0=120^0\)
TỪ ĐÓ TA TÍNH ĐC GÓC EAD=300 \(\Rightarrow\Delta AED\)cân tại E
\(\Rightarrow AE=ED\)
\(\Rightarrow\frac{EC}{AC}=\frac{AE}{AB}\)(thay vào cái tỉ số ở trên nhé)
\(\Rightarrow\frac{EC}{AC}=\frac{AC-AE}{AC}\)
\(\Rightarrow\frac{EC}{AC}=1-\frac{AE}{AC}\)(1)
ta kẻ:\(EH\perp AD\left(H\in AD\right)\)từ đó EH sẽ là đường cao của tam giác AED cân tại E
\(\Rightarrow AH=HE\)(TC)
\(\Delta AHE\) VUÔNG TẠI H,theo định lý Pytago TA CÓ:
\(AH^2+HE^2=AE^2\)
TA có tính chất sau:trong tam giác vuông có 1 góc bằng 30 độ thì cạnh đối diện với góc 30 độ bằng nửa cạnh huyền
\(\Rightarrow AE=2HE\)(áp dụng vào tam giác AHE)
\(\Rightarrow AH^2+HE^2=4HE^2\)
\(\Rightarrow AH^2=3HE^2\)
MÀ \(AH+HE=AD;AH=AE\Rightarrow2AH=AD\Rightarrow4AH^2=AD^2\)
\(\Rightarrow4.AH^2=12HE^2\Rightarrow AD^2=3.\left(4.HE^2\right)\)
\(\Rightarrow AD^2=3.AE^2\)(DO HE=2AE)
\(\Rightarrow AD=\sqrt{3}AE\)(do cạnh của tam giác luôn lớn hơn 0)
ta thày vào (1),có:
\(\frac{AE}{AB}=1-\frac{AE}{AC}\Rightarrow\frac{\sqrt{3}AE}{AB}=\sqrt{3}-\frac{\sqrt{3}AE}{AC}\)
\(\Rightarrow\frac{AD}{AB}=\sqrt{3}-\frac{AD}{AC}\)
\(\Rightarrow\frac{AD}{AB}+\frac{AD}{AC}=\sqrt{3}\)
\(\Rightarrow AD.\left(\frac{1}{AB}+\frac{1}{AC}\right)=\sqrt{3}\)
\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{3}}{AD}\)(ĐPCM)
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
Đặt AB = a ; AC = b ; AD = c . Kẻ DE vuông góc AC ( \(E\in AB;F\in AC\) )
Ta có tứ giác AFDE là hình chữ nhật do \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\) , AD phân giác trong của \(\widehat{EAF}\) nên \(\widehat{AFDE}\) là hình vuông . Suy ra
\(DE=DF=\frac{AD\sqrt{2}}{2}=\frac{C\sqrt{2}}{2}\) . Ta có :
\(S_{DAB}+S_{DAC}=S_{ABC}\)
\(\Leftrightarrow\frac{1}{2}AB.DE+\frac{1}{2}DF.AC=\frac{1}{2}AC.AB\)
\(\Leftrightarrow\frac{c\sqrt{2}}{2}a+\frac{c\sqrt{2}}{2}b=ab\)
\(\Leftrightarrow\frac{\sqrt{2}}{c}=\frac{1}{a}+\frac{1}{b}\) . Hay \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Chúc bạn học tốt !!!