Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình dễ tự vẽ nhé bạn
a ) Do \(DH\perp AC\Rightarrow\widehat{AHD}=90^o\)
Xét \(\Delta ABD\) và \(\Delta AHD\) có :
\(\widehat{BAD}=\widehat{HAD}\) ( AD là tia p/g )
AD là cạnh chung
\(\widehat{ABD}=\widehat{AHD}\left(=90^o\right)\)
nên \(\Delta ABD=\Delta AHD\left(g.c.g\right)\)
b ) Gọi K là giao điểm của BH và AD
Xét \(\Delta BAK\)và \(\Delta HAK\) có :
AB = AH ( do \(\Delta ABD=\Delta AHD\))
\(\widehat{BAK}=\widehat{HAK}\) ( AD là tia p/g )
AK là cạnh chung
nên \(\Delta BAK=\Delta HAK\left(c.g.c\right)\)
=> BK = HK ( 1 )
=> \(\widehat{AKB}+\widehat{AKH}=180^o\) ( hai góc kề bù )
\(\widehat{AKB}+\widehat{AKB}=180^o\)
\(\widehat{AKB}.2=180^o\)
\(\Rightarrow\widehat{AKB}=\frac{180^o}{2}=90^o\) ( 2 )
Từ ( 1 ) và ( 2 ) => AD là đường trung trực của BH
c ) Xét \(\Delta BDI\) và \(\Delta HDC\) có :
\(\widehat{DBI}=\widehat{DHC}\left(=90^o\right)\)
BD = HD ( do \(\Delta ABD=\Delta AHD\) )
\(\widehat{BDI}=\widehat{HDC}\) ( hai góc đối đỉnh )
nên \(\Delta BDI=\Delta HDC\left(g.c.g\right)\)
=> DI = DC
=> \(\Delta DIC\)cân tại D
e ) Gọi M là điểm AD cắt IC
Ta có :
AI = AB + BI
AC = AH + HC
mà AB = AH ( \(\Delta ABD=\Delta AHD\))
BI = HC ( \(\Delta BDI=\Delta HDC\) )
=> AI = AC
=> \(\Delta AIC\) cân tại A
Lại có : \(CB\perp AI\)=> CB là đường cao ứng với cạnh AI
\(IH\perp AC\)=> IH là đường cao ứng với cạnh AC
=> AM là đường cao thứ ba ( hay AD )
=> AM \(\perp\)IC
=> \(AD\perp IC\)
Tớ bổ sung ý d) cho Đường Tịch nè:
Ta có : tam giác DIC cân tại D
=> ID = DC
Mà BD = HD (cmt)
=> BD = HD
Mà ta có BC = BD + DC
IH = ID + DH
=> BC = IH
Xét tam giác vuông HIC và tam giác vuông BCI ta có :
BC = IH
IC chung
IBC = CHI = 90 độ
=> Tam giác HIC = tam giác BCI ( g.c.g)
=> BI = HC (tg ứng)
Xét tam giác AKB và tam giác AKH ta có
=> BAD = HAD ( AD là pg)
AK chung
AKB = AKH = 90 độ
=> Tam giác AKB = tam giác AKH (g.c.g)
=> AB = AK
Mà AI = AK + BI
AC = AH + HC
=> AI = AC
=> AIC cân tại A
=> AIC = ACI
Ta có AIC = ACI = 180 - A
Ta có AK = AH (cmt)
=> Tam giác BAH cân tại B
=> ABH = AHB
=> ABH = AHB = 180 - A
=> ABH = AHB = AIC = ACI ( cùng bằng 180 - A)
=> ABH = AIC
Mà 2 góc này ở vị trí đồng vị
=> BH //IC
=> (dpcm)
a: Xet ΔABD vuông tại A và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
c: Xét ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC và BI=HCC
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
g: BC+AB>AC
=>BC+2AB>AC+AB
mà AB<AD<AC
nên BC>AC+AD-2AB
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a ) Ta có :
+) \(AB< AC\) ( gt )
\(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )
+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABH+60+90=180\)
\(\Rightarrow ABH=30\)
b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt )
\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)
Mà \(ABH=30\) ( cmt )
\(\Rightarrow ABH=BAD\)
\(\Rightarrow ABH=BAI\)
Xét tam giác \(AIB\) và tam giác \(BHA\) có :
\(AB\) chung
\(AIB=BHA=90\)
\(BAI=ABH\)
\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g )
c ) Xét tam giác \(ABI\) có :
\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABI+30+90=180\)
\(\Rightarrow ABI=60\)
\(\Rightarrow ABE=60\) ( 1 )
Xét tam giác \(ABE\) có :
\(ABE+BAE+AEB=180\) ( tổng ba góc trong một tam giác )
\(\Rightarrow60+60+AEB=180\)
\(\Rightarrow AEB=60\) ( 2 )
Mà \(BAE=60\) ( gt ) ( 3 )
Từ ( 1 ) ; ( 2 ) ; ( 3 )
\(\Rightarrow\) tam giác \(ABE\) đều
Chứng minh câu d:
A B C D H E I 1
Ta có: AE = AB < AC
=> E thuộc canh AC
\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE (1)
Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED
=> ^ABD = ^AED => ^B1 = ^DEC ( góc ngoài )
mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B1 > ^C
=> ^DEC > ^C = ^ECD
Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2)
Từ (1); (2) => DC > DB
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC