1+1+1+.......+1+1*0=?
Có 99 số 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích A có 99 số hạng trong đó có 49 số chẵn và 50 số lẻ.
Trong tích A có các thừa số chia hết cho 5 là: 5, 10, 15, 20, 25, 95.
Xét dãy số: 5, 10, 15, 20, 25, 95. Ta có, số số hạng của dãy số là: 95 - 5 5 + 1 = 19 (số)
Ta thấy 19 số hạng của dãy số trên có thể phân tích thành tích của một hay hai thừa số 5 với một số khác.
Ví dụ: 5 = 5 × 1; 10 = 5 × 2; 15 = 3 × 5; 20 = 4 × 5; 25 = 5 × 5;...
Vậy tích A có thể phân tích thành một tích mà trong đó có 22 thừa số 5.
(vì 25 = 5 × 5; 50 = 2 × 5 × 5; 75 = 3 × 5 × 5)
Một thừa số 5 nhân với một số chẵn sẽ cho một số tròn chục (có tận cùng là 0).
Vậy, A có 22 chữ số tận cùng là chữ số 0.
Bài 1:
E = \(\dfrac{1+\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}\)
E = \(\dfrac{\dfrac{100}{100}+\dfrac{100}{99}+...+\dfrac{100}{2}}{\dfrac{1}{100}+\dfrac{1}{99}+...+\dfrac{1}{2}}\)
E = \(\dfrac{100\cdot\left(\dfrac{1}{100}+\dfrac{1}{99}+...+\dfrac{1}{2}\right)}{\dfrac{1}{100}+\dfrac{1}{99}+...+\dfrac{1}{2}}\)
E = 100
Ta có:
F = \(\dfrac{\left(1-\dfrac{1}{7}\right)+\left(1-\dfrac{2}{8}\right)+...+\left(1-\dfrac{94}{100}\right)}{\dfrac{1}{35}+\dfrac{1}{40}+...+\dfrac{1}{500}}\)
F = \(\dfrac{\dfrac{6}{7}+\dfrac{6}{8}+...+\dfrac{6}{100}}{\dfrac{1}{35}+\dfrac{1}{40}+...+\dfrac{1}{500}}\)
F = \(\dfrac{6\cdot\left(\dfrac{1}{7}+\dfrac{1}{8}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}\cdot\left(\dfrac{1}{7}+\dfrac{1}{8}+...+\dfrac{1}{100}\right)}\)
F = 6 : 1/5
F = 30
=> E - 2F = 100 - 30*2
= 100 - 60
= 40
Vậy E - 2F = 40
Xem lại đề nhé. Thấy sao sao ấy. Nếu cuối cùng có thêm số 25 nữa thì nó là số chính phương. Chứ thế này thấy nghi ngờ quá.
Ta có :
\(\frac{x-99-1}{99}-\frac{x-99-1}{98}-\frac{x-99-1}{97}-\frac{x-99-1}{96}-\frac{x-99-1}{95}-\frac{x-99-1}{94}=0\)
\(\Leftrightarrow\)\(\frac{x-100}{99}-\frac{x-100}{98}-\frac{x-100}{97}-\frac{x-100}{96}-\frac{x-100}{95}-\frac{x-100}{94}=0\)
\(\Leftrightarrow\)\(\left(x-100\right)\left(\frac{1}{99}-\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\right)=0\)
Vì \(\frac{1}{99}-\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\ne0\)
Nên \(x-100=0\)
\(\Rightarrow\)\(x=100\)
Vậy \(x=100\)
Bài làm mang tính chất tham khảo vì em mới lớp 7 ~
\(B=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)
\(=\dfrac{\sqrt{2}-1}{1}+\dfrac{\sqrt{3}-\sqrt{2}}{1}+...+\dfrac{\sqrt{100}-\sqrt{99}}{1}\)
\(=\sqrt{100}-1=9\)
\(x^3+3.9x^2+3.9^2x+9^3=0\)
\(\Leftrightarrow\left(x+9\right)^3=0\)
\(\Leftrightarrow x=-9\)
\(1+1+1+...+1+1\cdot0=0\)
1+1+1+1+...1+1+1*0=0
dù có 99 con số́ 1