Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 99..9 (n số 9 )
= 99...900...0 ( n+1 số 9 và n+1 số 0).
Đặt x =11...1 (n+1 số 1) .
Thì B =9x.10^(n+1) -9x =9x.[10^(n+1) -1] =9x.99...9 (n+1 số 9 )
nên B = 9x.9x = (9x)^2 =(99...9)^2 (n+1 số 9 ).
Tham khảo bài này nha : https://diendan.hocmai.vn/threads/toan-8-chung-minh-so-chinh-phuong-giup-em-voi.268474/
\(22.10^{2n+1}+4.10^{2n}+\left(10^{n-2}-1\right).10^{n+2}+1.10^{n+1}+9\)\(=220.10^{2n}+4.10^{2n}+10^{2n}-10^{n+2}+10^{n+1}+9\)
\(=10^{2n}.225-10^n\left(100-10\right)+9\)
\(=\left(10^n.15\right)^2-90.10^n+9\)
\(=\left(10^n.15-3\right)^2\)
Vậy A là Số Chính Phương (đpcm)
22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9
=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9
=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9
=(10n.15−3)2=(10n.15−3)2
Vậy A là Số Chính Phương (đpcm)
Xem lại đề nhé. Thấy sao sao ấy. Nếu cuối cùng có thêm số 25 nữa thì nó là số chính phương. Chứ thế này thấy nghi ngờ quá.
Ta có :
\(x=99....90....025\)
| n số 9 ||n số 0|
Dễ thấy \(10^n-1=999...9\)( n chữ số 9 )
Ví dụ \(10-1=9\)
\(10000-1=9999\)
\(...\)
\(\Rightarrow\left(10^n-1\right).10^{n+2}+25\)
\(=10^n.10^{n+2}-10^{n+2}+25\)
\(=10^{2n+2}-10.10^{n+1}+25\)
\(=\left(10^{n+1}\right)^2-2.5.10^{n+1}+5^2\)
\(=\left(10^{n+1}-5\right)^2\) là số chính phương.
Vậy ...
k mk đi
ai k mk
mk k lại
thanks
có làm thì mới có ăn nhé