Giúp mình với:
Tìm GTNN của biểu thức:
x/2+2/x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|3x-2\right|-5\ge-5\forall x\)
Dấu '=' xảy ra khi x=2/3
\(A=\dfrac{x}{\left(x+2022\right)^2}=\dfrac{x}{x^2+4044x+2022^2}=\dfrac{1}{x+4044+\dfrac{2022^2}{x}}=\dfrac{1}{\left(x+\dfrac{2022^2}{x}\right)+4044}\le\dfrac{1}{2.\sqrt{x}.\sqrt{\dfrac{2022^2}{x}}+4044}=\dfrac{1}{2..\sqrt{\dfrac{x.2022^2}{x}}+4044}=\dfrac{1}{4044+4044}=\dfrac{1}{8088}\)-\(A_{max}=\dfrac{1}{8088}\Leftrightarrow x=2022\)
\(15:\left(x+2\right)=3\)
\(\Rightarrow x+2=15:3=5\)
\(\Rightarrow x=5-2=3\)
\(x=2020\\ \Leftrightarrow x+1=2021\)
Thay vào biểu thức:
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\\ =x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1=1\)
Giải:x-1 thuộc Ư(2)
=>x-1 thuộc {1;2}
=>x thuộc {3;4}
\(x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1\in\left\{2,1-1,-2\right\}\)
\(x\in\left\{3,2,0,-1\right\}\)
Lời giải:
Ta thấy: $(x-1)^2\geq 0$ với mọi $x$
$(y+2)^2\geq 0$ với mọi $y$
$\Rightarrow A=(x-1)^2+4(y+2)^2+2021\geq 0+4.0+2021=2021$
Vậy $A_{\min}=2021$. Giá trị đạt được khi $x-1=y+2=0$
$\Rightarrow x=1; y=-2$
Đề thiếu: x > 1 thì mới tìm được min
\(A=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)
Áp dụng bđt Cô-si được
\(A=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{x-1}{2}=\frac{2}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=4\)
Mà x > 1 nên x - 1 > 0
=> x - 1 = 2
=> x = 3
Vậy \(A_{min}=\frac{5}{2}\Leftrightarrow x=3\)