K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

\(a^2+b^2+c^3+d^4\)

1 tháng 10 2021

a2 + b2 + c3 + d4

5 tháng 9 2023

\(a,5\cdot p\cdot5\cdot p\cdot2q\cdot4q\)

\(=5^2\cdot p^2\cdot2\cdot q\cdot2^2\cdot q\)

\(=5^2\cdot2^3\cdot p^2\cdot q^2\)

\(b,a\cdot a+b\cdot b+c\cdot c\cdot c+d\cdot d\cdot d\cdot d\)

\(=a^2+b^2+c^3+d^4\)

#Urushi

a: \(3\cdot3\cdot3\cdot3\cdot3=3^5\)

b: \(y\cdot y\cdot y\cdot y=y^4\)

c: \(5\cdot p\cdot5\cdot p\cdot2\cdot q\cdot4\cdot q=25\cdot2\cdot4\cdot p^2q^2=2\cdot\left(10qp\right)^2\)

d: \(a\cdot a+b\cdot b+c\cdot c+d\cdot d\cdot d\cdot d=a^2+b^2+c^2+d^4\)

25 tháng 9 2021

cảm ơn cậu nhiều

AH
Akai Haruma
Giáo viên
4 tháng 10

Nếu $a$ là số lẻ và $b$ chẵn thì đề sai bạn nhé. 

26 tháng 7 2018

bài 1

a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)

Dấu "=" xảy ra khi x=1

Vậy Amin=-1 khi x=1

b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)

Dấu "=" xảy ra khi x=1

Vậy Bmin=-2 khi x=1

bài 2:

a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)

Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

dấu "=" xảy ra khi x=-1/2

Vậy Amax=6/5 khi x=-1/2

b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Dấu '=" xảy ra khi x=-2/3

Vậy Bmax=15/41 khi x=-2/3

AH
Akai Haruma
Giáo viên
12 tháng 10

a.

\(P=\frac{6}{x^2-6x+17}\)

Ta thấy: $x^2-6x+17=(x-3)^2+8\geq 8$ với mọi $x\in\mathbb{R}$

$\Rightarrow P=\frac{6}{x^2-6x+17}\leq \frac{6}{8}=\frac{3}{4}$

Vậy $P_{\max}=\frac{3}{4}$. Giá trị này đạt tại $x-3=0\Leftrightarrow x=3$

AH
Akai Haruma
Giáo viên
12 tháng 10

b/

Ta có:

$6=a^2+b^2-ab=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a^2+b^2-2ab)$

$=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a-b)^2\geq \frac{1}{2}(a^2+b^2)$ với mọi $a,b$

$\Rightarrow 12\geq a^2+b^2$
Vậy $P_{\max}=12$. Giá trị này đạt tại $a=b=\pm \sqrt{6}$