Cho phân số : A = \(\frac{n+1}{n-3}\)(n\(\in\)Z: n \(\ne\)3). Tìm n để A là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Gọi UCLN(n+1,n+2)=d
Ta có:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+2)-(n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy \(\frac{n+1}{n+2}\)tối giản
\(\frac{n+1}{n-3}=4+\frac{n+4}{n-3}=>để\frac{n+1}{n-3}\)tối giản thì n-3 thuộc Ư(4) => Ư(4) = -4;-2;-1;1;2;4
n-3 = -4 => n = -1
n-3 = -2 => n = 1
n-3 = -1 => n =2
n-3 = 1 => n = 4
n-3 = 2 => n= 5
n-3 = 4 => n = 7
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A là phân số tối giản <=> \(\frac{4}{n-3}\) là phân số tối giản
Để A là phân số tối giản thì: n + 1 chia hết cho n - 3
=> n -3 + 4 chia hết cho n - 3
mà n - 3 chia hết cho n - 3
=> 4 chia hết cho n - 3 hay n - 3 thuộc Ư(4)
=> n - 3 thuộc { -1 ; 1 ; 2 ; -2 ; 4 ; - 4 }
=> n thuộc { 2 ; 4 ; 5 ; 1 ; 7 ; - 1 }
a) Để A=\(\frac{n-5}{n+1}\)có giá trị nguyên thì n-5 chia hết cho n+1
=>n+1-6 chia hết cho n+1
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=>n thuộc {0;1;2;5;-2;-3;-4;-7}
Vậy.....
\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}\)
Vì \(n-3⋮n-3\) . Để \(\frac{\left(n-3\right)+4}{n-3}\) là phân số tối giản <=> 4 không chia hết cho n - 3
\(\Rightarrow n-3\ne4k\) ( k thuộc N) \(\Rightarrow n\ne4k+3\)
Vậy với \(n\ne4k+3\) ( k thuộc N) thì \(A=\frac{n+1}{n-3}\) là phân số tối giản
\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}\)
Vì n - 3 \(⋮\)n - 3 nên \(\frac{\left(n-3\right)+4}{n-3}\)là phân số tối giản. Suy ra 4 không chia hết cho n -3
\(=>n-3\ne4k\left(k\in N\right)=>4k+3\)
Vậy \(n\ne4k+3\left(k\in N\right)=>A=\frac{n+1}{n-3}\)là phân số tối giản
Ủng hộ !