K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

Giả sử tồn tại số nghuyên n thỏa mãn \(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)

Ta có \(n^3+2018n=n^3-n+2019n=n\left(n-1\right)\left(n+1\right)+2019⋮3\)

Mặt khác \(2020^{2020}+1=\left(2019+1\right)^{2020}+1\) chia 3 dư 2

\(\Rightarrow\) vô lí

Vậy không tồn tại số nguyên n thỏa mãn yêu cầu bài toán

29 tháng 4 2022

 Ta có:

\(-2018m>-2018n\)

\(\Rightarrow-2018m.\left(-\dfrac{1}{2018}\right)< -2018n.\left(-\dfrac{1}{2018}\right)\)

\(\Rightarrow m>n\)

b) \(x^2-x\left(x+2\right)>3x-1\)

\(\Leftrightarrow x^2-x^2-2x>3x-1\)

\(\Leftrightarrow-2x-3x>-1\)

\(\Leftrightarrow-5x>-1\)

\(\Leftrightarrow x< \dfrac{1}{5}\)

Vậy S = {\(x\) | \(x< \dfrac{1}{5}\)}

29 tháng 4 2022

a) Ta có: -2018m > -2018n

            \(\Leftrightarrow-2018m\times\left(\dfrac{-1}{2018}\right)< -2018n\times\left(\dfrac{-1}{2018}\right)\)

            \(\Leftrightarrow\) m < n

 

8 tháng 12 2021

Giả sử có 8p-1;8p+1 là SNT

Nếu p = 3 => 8p+1=25 không phải SNT

=> p \(⋮̸3\)

=> 8p  \(⋮̸3\)

Xét 8p-1;8p;8p+1 là 3 số TN liên tiếp

=> Luôn tồn tại 1 số chia hết cho 3 (vô lý)

 

29 tháng 12 2021

 Bài này mình chịu

NV
25 tháng 12 2022

Với \(p=3\Rightarrow8p+1=25\) không là số nguyên tố

Với \(p>3\Rightarrow p\) không chia hết cho 3 nên \(p=3k+1\) hoặc \(p=3k+2\)

- Với \(p=3k+1\Rightarrow8p+1=24k+9=3\left(8k+3\right)⋮3\) nên không là số nguyên tố

- Với \(p=3k+2\Rightarrow8p-1=24k+15=3\left(8k+5\right)⋮3\) nên không là số nguyên tố

Vậy \(8p-1\) và \(8p+1\) luôn có ít nhất 1 số là hợp số, hay 2 số đã cho không đồng thời là số nguyên tố

20 tháng 3 2020

Với p=2 => \(\hept{\begin{cases}8p+1=8\cdot2+1=16+1=17\\8p-1=8\cdot2-1=16-1=15\end{cases}}\)

Với p=3 \(\Rightarrow\hept{\begin{cases}8p-1=8\cdot3-1=24-1=23\\8p+1=8\cdot3+1=24+1=25\end{cases}}\)

Nếu p>3 => p có dạng 3k+1 hoặc 3k+2

Với p=3k+1 \(\Rightarrow\hept{\begin{cases}8p-1=8\left(3k+1\right)-1=24k+8-1=24k+7\\8p+1=8\left(3k+1\right)+1=24k+8+1=24k+9\end{cases}}\)

Với p=3k+2 \(\Rightarrow\hept{\begin{cases}8p-1=8\left(3k+2\right)-1=24k+16-1=24k+15\\8p+1=8\left(3k+2\right)+1=24k+16+1=24k+17\end{cases}}\)

=> đpcm

29 tháng 12 2021

Khó thật 

27 tháng 9 2018

Ta có:

\(2020\equiv1\left(mod3\right)\)\(\Rightarrow2020^{2020}\equiv1\left(mod3\right)\)

\(\Rightarrow2020^{2020}+1\equiv2\left(mod3\right)\)

Lại có:

\(n^3+2018n=n\left(n^2+2018\right)\)

\(+\)Nếu n chia hết cho 3 thì \(n\left(n^2+2018\right)⋮3\)

+) Nếu \(n⋮̸3\)thì \(n^2+2018⋮3\)

Do đó n(n^2+2018) luôn chia hết cho 3

Vậy....