Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Olm sẽ hướng dẫn em giải những dạng toán nâng cao như này bằng phương pháp đánh giá em nhé.
Nếu n = 2 ta có: 2 + 2 = 4 ( loại)
Nếu n = 3 ta có: 2n + 27 = 2.3 + 27 = 33 (loại)
Nếu n > 3 thì vì n là số nguyên tố nên n có dạng:
n = 3k + 1 hoặc n = 3k + 2
Với n = 3k + 1 ta có: n + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3 (loại)
Với n = 3k + 2 ta có: n + 10 = 3k + 2 + 10 = 3k + 12 =3.(k+4)⋮3 (loại)
Không có số tự nhiên nào thỏa mãn n+2; n+10; 2n+27 đồng thời là số nguyên tố.
Kết luận: n \(\in\) \(\varnothing\)
Ta có: n là số có 2 chữ số
\(\Rightarrow10\le n\le99\)
\(\Rightarrow21\le2n+1\le199\)
Vì 2n + 1 là số chính phương và là số lẻ
\(\Rightarrow2n+1\in\left\{25;49;81;121;169;\right\}\)
\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)
\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\)
Mà 3n + 1 là số chính phương
=> 3n + 1 = 121
=> n = 40
Vậy n = 40 là giá trị cần tìm
Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào
1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8
Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải
http://en.wikipedia.org/wiki/Fermat%27s_little_theorem
như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24