Tìm GTNN của (a^2+a+2)/a^2 (a khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức này ko tồn tại GTNN (cũng đồng thời ko tồn tại cả GTLN).
Nếu 2 hệ số tự do -1 và 1 kia ko bị rút gọn thì S có tồn tại min. Ko biết em có ghi nhầm đề ở đâu không
\(A=\dfrac{-\left(x^2+2xy+y^2\right)+4x^2+4xy+y^2}{x^2+2xy+y^2}=-1+\left(\dfrac{2x+y}{x+y}\right)^2\ge-1\)
\(A_{min}=-1\) khi \(2x+y=0\)
Ta có : \(Q=\frac{a^2-2a+2017}{a^2}=\frac{2017a^2-4034a+2017^2}{2017a^2}=\frac{2016a^2+a^2-4037a+2017^2}{2017a^2}\)
\(=\frac{2016a^2+\left(a-2017\right)^2}{2017a^2}=\frac{2016a^2}{2017a^2}+\frac{\left(a-2017\right)^2}{2017a^2}=\frac{2016}{2017}+\frac{\left(a-2017\right)^2}{2017a^2}\)
Vì : \(\frac{\left(a-2017\right)^2}{2017a^2}\ge0\forall a\)
Nên : \(Q=\frac{2016}{2017}+\frac{\left(a-2017\right)^2}{2017a^2}\ge\frac{2016}{2017}\)
Vậy \(Q_{min}=\frac{2016}{2017}\) khi a = 2017
\(A=\frac{1}{2017}-\frac{2}{2017x}+\frac{1}{x^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{1}{2017}-\frac{1}{2017^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{2016}{2017^2}\)
\(\Rightarrow A\ge\frac{2016}{2017^2}\)Dấu "=" xảy ra khi \(\left(\frac{1}{2017}-\frac{1}{x}\right)^2=0\Rightarrow x=2017\)
Vây ......
\(A=\frac{x^2-2x+2014}{x^2}=1-\frac{2}{x}+\frac{2014}{x^2}\)
Đặt \(\frac{1}{x}=a\)
=> \(A=1-2a+2014a^2\)
<=>\(A=2014\left(a^2-\frac{1}{1007}a+\frac{1}{2014}\right)\)
<=>\(A=2014\left(a^2-2\times a\times\frac{1}{2014}+\frac{1}{2014^2}-\frac{1}{2014^2}+\frac{1}{2014}\right)\)
<=>\(A=2014\left[\left(a-\frac{1}{2014}\right)^2+\left(\frac{1}{2014}-\frac{1}{2014^2}\right)\right]\)
<=>\(A=2014\left(a-\frac{1}{2014}\right)^2+2014\left(\frac{1}{2014}-\frac{1}{2014^2}\right)\)
<=>\(A=2014\left(a-\frac{1}{2014}\right)^2+1-\frac{1}{2014}\)
<=>\(A=2014\left(a-\frac{1}{2014}^2\right)+\frac{2013}{2014}\ge\frac{2013}{2014}\)
Vậy A đạt GTNN <=> \(A=\frac{2013}{2014}<=>a=\frac{1}{x}=\frac{1}{2014}<=>x=2014\)
tử chia mẫu=\(1+\frac{1}{a}+\frac{2}{a^2}\) đặt 1/a =x ta có:
\(1+x+2x^2=2\left(x+\frac{1}{4}\right)^2+\frac{15}{8}\)còn lại tự giải nốt