K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Theo định lý Fermat nhỏ, với mọi snt $p,q$ mà $(p,q)=1$ ta luôn có:

\(\left\{\begin{matrix} p^{q-1}\equiv 1\pmod q\\ q^{p-1}\equiv 1\pmod p\end{matrix}\right.\)\(\left\{\begin{matrix} q^{p-1}\equiv 0\pmod q\\ p^{q-1}\equiv 0\pmod p\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} p^{q-1}+q^{p-1}\equiv 1\pmod q\\ q^{p-1}+p^{q-1}\equiv 1\pmod p\end{matrix}\right.\)

Đặt \(p^{q-1}+q^{p-1}=qm+1=pn+1\)

\(\Rightarrow qm=pn\). Mà $(p,q)=1$ nên \(qm\vdots p\Rightarrow m\vdots p\). Đặt \(m=pm_1\)

Khi đó: \(p^{q-1}+q^{p-1}=qm+1=qpm_1+1\equiv 1\pmod {pq}\)

Ta có đpcm.

16 tháng 12 2017

Định lý Wilson

4 tháng 2 2019

 Ta có : a=1 (gt)=> a^2 =1.1=1=a

                       => a^3 =1.1.1=1=a

31 tháng 7 2021

1.ta có: 8p-1 là số nguyên tố (đề bài)

8p luôn luôn là hợp số 

ta có: (8p-1)8p(8p+1) chia hết cho 3 

từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs

AH
Akai Haruma
Giáo viên
13 tháng 1 2018

Lời giải:

Vì $m,n$ là hai số nguyên tố cùng nhau nên theo định lý Euler ta có:

\(\left\{\begin{matrix} m^{\varphi(n)}\equiv 1\pmod n\\ n^{\varphi (m)}\equiv 0 \pmod n\end{matrix}\right.\)

\(\Rightarrow m^{\varphi (n)}+n^{\varphi (m)}\equiv 1\pmod n\) (1)

Tương tự:

\(\left\{\begin{matrix} m^{\varphi (n)}\equiv 0\pmod m\\ n^{ \varphi (m)}\equiv 1\pmod m\end{matrix}\right.\)

\(\Rightarrow m^{\varphi (n)}+n^{\varphi (m)}\equiv 1\pmod m\) (2)

Từ (1) và (2) ta có thể đặt \(m^{\varphi (n)}+n^{\varphi (m)}=mk+1=nt+1\)

(trong đó \(k,t\in\mathbb{N}\) )

\(\Rightarrow mk=nt\Rightarrow mk\vdots n\). Mà (m,n) nguyên tố cùng nhau nên \(k\vdots n\Rightarrow k=nu (u\in\mathbb{N})\)

Khi đó:

\(m^{\varphi (n)}+n^{\varphi (m)}=mnu+1\Leftrightarrow m^{\varphi (n)}+n^{\varphi (m)} \equiv 1\pmod {mn}\)

Ta có đpcm.

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
13 tháng 12 2021

giải thích rõ hộ em với ạ em vnx chưa hiểu ạ;-;