Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n=4k+1\) thì \(P=\dfrac{\left(4k+1\right)\left(4k+2\right)\left(4k+4\right)\left(4k+6\right)}{2}=8\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.
Dẫn đến \(Q=\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.
Lại có \(\left(2k+1,4k+1\right)=1;\left(2k+1,k+1\right)=1;\left(2k+1,2k+3\right)=1\) nên \(\left(2k+1,\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\right)=1\).
Do đó để Q là số lập phương thì \(2k+1\) và \(R=\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.
Mặt khác, ta có \(R=8k^3+22k^2+17k+3\)
\(\Rightarrow8k^3+12k^2+6k+1=\left(2k+1\right)^3< R< 8k^3+24k^2+24k+8=\left(2k+2\right)^3\) nên \(R\) không thể là số lập phương.
Vậy...
Lời giải:
Theo định lý Fermat nhỏ, với mọi snt $p,q$ mà $(p,q)=1$ ta luôn có:
\(\left\{\begin{matrix} p^{q-1}\equiv 1\pmod q\\ q^{p-1}\equiv 1\pmod p\end{matrix}\right.\)Mà \(\left\{\begin{matrix} q^{p-1}\equiv 0\pmod q\\ p^{q-1}\equiv 0\pmod p\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} p^{q-1}+q^{p-1}\equiv 1\pmod q\\ q^{p-1}+p^{q-1}\equiv 1\pmod p\end{matrix}\right.\)
Đặt \(p^{q-1}+q^{p-1}=qm+1=pn+1\)
\(\Rightarrow qm=pn\). Mà $(p,q)=1$ nên \(qm\vdots p\Rightarrow m\vdots p\). Đặt \(m=pm_1\)
Khi đó: \(p^{q-1}+q^{p-1}=qm+1=qpm_1+1\equiv 1\pmod {pq}\)
Ta có đpcm.
Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
=> \(n+2=p^2\) là số chính phương.
ta có p^2=(m+n)(m-1)
vì m+n>m-1
>0
m
+n=p^2
m-1=1
suy ra m=2=>n+2=p^2 là số chính phuopwng
Một số nguyên tố lớn hơn 3 khi chia cho 3 sẽ có 2 khả năng xảy ra
p = 3k + 1 ; p = 3k + 2 ;
Với p = 3k + 1
=> (p + 1)(p - 1) = p2-1=(3k+1)2-1=9k2+6k=3k(3k+2)
Vì đây là tích 2 số tự nhiên liên tiếp => chia hết cho 2 , 3 => (p-1)(p+1) chia hết cho 6
C/m tương tự để chia hết cho 24
Với p = 3k + 2
tương tự
https://hoanghamaths.violet.vn/present/de-thi-hsg-vinh-tuong-2012-2013-8877603.html
bài cuối
neus ko hiểu mai mik ns cho h mik bận òi
đặt \(a=5+2\sqrt{6}\).ta sẽ chứng minh với dạng tổng quát \(\left[a^n\right]\)là 1 số tự nhiên lẻ.
ta có: \(a^n=\left(5+2\sqrt{6}\right)^n=x+y\sqrt{6}\)(x,y là các số tự nhiên) (*)
đặt \(b=5-2\sqrt{6}\Rightarrow b^n=x-y\sqrt{6}\)
\(\Rightarrow a^n+b^n=2x\)
mà \(0< b=5-2\sqrt{6}< 1\)
\(\Rightarrow0< b^n< 1\)
\(\Rightarrow2x-1< a^n=2x-b^n< 2x\)
nên \(\left[a^n\right]=2x-1\)lẻ vì x nguyên.
p/s:(*) : thử \(\left(5+2\sqrt{6}\right)^2,\left(5+2\sqrt{6}\right)^3\)đều có dạng \(A+B\sqrt{6}\)
Định lý Wilson