K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=1-2+3-4+...+99-100\)

\(\Rightarrow B=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)

\(\Rightarrow B=-1+\left(-1\right)+...+\left(-1\right)\)\(\)  (  \(50\)cặp)

\(\Rightarrow B=-1\times50\)

\(\Rightarrow B=-50\)

B\(=1-2+3-4+...+99-100\)

\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)

\(=-1.-1....-1\)\(=-1.50=-50\)

HTDT

6 tháng 5 2021

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

8 tháng 2 2018

ai biết trả lời nhanh giúp mình nhé

19 tháng 6 2017

a) Ta có : $1.3+2.4+3.5+...+99.101+100.102$

$=(2-1)(2+1)+(3-1)(3+1)+(4-1)(4+1)+...+(100-1)(100+1)+(101-1)(101+1)$

$=2^2-1+3^2-1+4^2-1+...+100^2-1+101^2-1$

$=(2^2+3^2+4^2+...+100^2+101^2)-100$

b) $1.100+2.99+3.98+...+99.2+100.1$

$=1.100+2.(100-1)+3.(100-2)+...+99.(100-98)+100.(100-99)$

$=100(1+2+3+...+99+100)-(1.2+2.3+...+99.100)$

$=100.\dfrac{101.100}{2}-\dfrac{99.100.101}{3}=171700$

8 tháng 2 2018

\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.......+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)

\(\Leftrightarrow2B=1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+........+\dfrac{98}{2^{99}}+\dfrac{99}{2^{100}}\)

\(\Leftrightarrow2B-B=\left(1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+........+\dfrac{99}{2^{100}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+......+\dfrac{100}{2^{100}}\right)\)

\(\Leftrightarrow B=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)

Đặt :

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+......+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)

\(\Leftrightarrow B=1-\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)

\(\Leftrightarrow B=\dfrac{2^{100}-101}{2^{100}}\)

9 tháng 2 2018

thank you