\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y}+\sqrt{y^2+3}\right)=3\)
Tính x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)
\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)
Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)
\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)
Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)
Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)
Vậy \(M=-20\sqrt{2}\)
theo bài ra
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)
\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)
\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)
\(x^3=4\sqrt{2}-3.1x\)
\(x^3=4\sqrt{2}-3x\)
\(< =>x^3+3x-4\sqrt{2}=0\)
rồi làm y tương tự rồi thế vào M là ra
a. \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=x-3\sqrt{x} +2\sqrt{x}-6=x-\sqrt{x}-6\)
b. \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)=x-y\)
c. \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right).\sqrt{3}\)
\(=\left(\dfrac{5}{\sqrt{3}}-\dfrac{7}{\sqrt{3}}+\sqrt{3}\right).\sqrt{3}=\dfrac{5}{3}-\dfrac{7}{3}+9=\dfrac{25}{3}\)
d. \(\left(1+\sqrt{3}-\sqrt{5}\right)\left(1+\sqrt{3}+\sqrt{5}\right)\)
\(=\left(1+\sqrt{3}\right)^2-5=1+2\sqrt{3}+3-5=2\sqrt{3}-1\)
a: ĐKXĐ: \(\left(x+2\right)\left(x+3\right)>=0\)
=>\(\left[{}\begin{matrix}x>=-2\\x< =-3\end{matrix}\right.\)
\(y=\sqrt{\left(x+2\right)\left(x+3\right)}=\sqrt{x^2+5x+6}\)
=>\(y'=\dfrac{\left(x^2+5x+6\right)'}{2\sqrt{x^2+5x+6}}=\dfrac{2x+5}{2\sqrt{x^2+5x+6}}\)
y'>0
=>\(\dfrac{2x+5}{2\sqrt{x^2+5x+6}}>0\)
=>2x+5>0
=>\(x>-\dfrac{5}{2}\)
Kết hợp ĐKXĐ, ta được: x>=-2
Đặt y'<0
=>2x+5<0
=>2x<-5
=>\(x< -\dfrac{5}{2}\)
Kết hợp ĐKXĐ, ta được: x<=-3
Vậy: Hàm số đồng biến trên \([-2;+\infty)\) và nghịch biến trên \((-\infty;-3]\)
b: ĐKXĐ: \(\dfrac{2x+1}{x-3}>=0\)
=>\(\left[{}\begin{matrix}x>3\\x< =-\dfrac{1}{2}\end{matrix}\right.\)
\(y=\sqrt{\dfrac{2x+1}{x-3}}\)
=>\(y'=\dfrac{\left(\dfrac{2x+1}{x-3}\right)'}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
=>\(y'=\dfrac{\dfrac{\left(2x+1\right)'\left(x-3\right)-\left(2x+1\right)\left(x-3\right)'}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
=>\(y'=\dfrac{\dfrac{2\left(x-3\right)-2x-1}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
\(=-\dfrac{\dfrac{7}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}< 0\forall x\) thỏa mãn ĐKXĐ, trừ x=-1/2 ra
=>Hàm số luôn đồng biến trên \(\left(3;+\infty\right);\left(-\infty;-\dfrac{1}{2}\right)\)
c:
ĐKXĐ: x>=-3
\(y=\left(x+1\right)\sqrt{x+3}\)
=>\(y'=\left(x+1\right)'\cdot\sqrt{x+3}+\left(x+1\right)\cdot\sqrt{x+3}'\)
=>\(y'=\sqrt{x+3}+\left(x+1\right)\cdot\dfrac{\left(x+3\right)'}{2\sqrt{x+3}}\)
=>\(y'=\sqrt{x+3}+\dfrac{x+1}{2\sqrt{x+3}}\)
=>\(y'=\dfrac{2x+6+x+1}{2\sqrt{x+3}}=\dfrac{3x+7}{2\sqrt{x+3}}\)
Đặt y'>0
=>3x+7>0
=>x>-7/3
Kết hợp ĐKXĐ, ta được: x>-7/3
Đặt y'<0
3x+7<0
=>x<-7/3
Kết hợp ĐKXĐ, ta được: \(-3< x< -\dfrac{7}{3}\)
Vậy: Hàm số đồng biến trên \(\left(-\dfrac{7}{3};+\infty\right)\) và nghịch biến trên \(\left(-3;-\dfrac{7}{3}\right)\)
d: \(y=\dfrac{x-1}{x^2+1}\)(ĐKXĐ: \(x\in R\))
=>\(y'=\dfrac{\left(x-1\right)'\left(x^2+1\right)-\left(x-1\right)\left(x^2+1\right)'}{\left(x^2+1\right)^2}\)
=>\(y'=\dfrac{x^2+1-2x\left(x-1\right)}{\left(x^2+1\right)^2}=\dfrac{-x^2+2x+1}{\left(x^2+1\right)^2}\)
Đặt y'>0
=>\(-x^2+2x+1>0\)
=>\(1-\sqrt{2}< x< 1+\sqrt{2}\)
Đặt y'<0
=>\(-x^2+2x-1< 0\)
=>\(\left[{}\begin{matrix}x>1+\sqrt{2}\\x< 1-\sqrt{2}\end{matrix}\right.\)
Vậy: hàm số đồng biến trên khoảng \(\left(1-\sqrt{2};1+\sqrt{2}\right)\)
hàm số nghịch biến trên khoảng \(\left(1+\sqrt{2};+\infty\right);\left(-\infty;1-\sqrt{2}\right)\)
a/ \(y=\left(x^3-3x\right)^{\dfrac{3}{2}}\Rightarrow y'=\dfrac{3}{2}\left(x^3-3x\right)^{\dfrac{1}{2}}\left(x^3-3x\right)'=\dfrac{3}{2}\left(3x^2-3\right)\sqrt{x^3-3x}\)
b/ \(y'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\sqrt{x^3+1}-x^2+2\right)'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\dfrac{3x^2}{\sqrt{x^3+1}}-2x\right)\)c/
\(y'=14\left(x^6+2x-3\right)^6\left(x^6+2x-3\right)'=14\left(x^6+2x-3\right)^6\left(6x^5+2\right)\)
d/ \(y=\left(x^3-1\right)^{-\dfrac{5}{2}}\Rightarrow y'=-\dfrac{5}{2}\left(x^3-1\right)^{-\dfrac{7}{2}}\left(x^3-1\right)'=-\dfrac{15x^2}{2\sqrt{\left(x^3-1\right)^7}}\)
\(Sửa:\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\\ \Leftrightarrow\left(x+\sqrt{x^2+3}\right)\left(x-\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\\ \Leftrightarrow\left(x^2-x^2-3\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\\ \Leftrightarrow-3\left(y+\sqrt{y^2+3}\right)=-3\left(\sqrt{x^2+3}-x\right)\\ \Leftrightarrow y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
Cmtt: \(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)
Cộng vế theo vế:
\(\Leftrightarrow x+\sqrt{x^2+3}+y+\sqrt{y^2+3}=\sqrt{x^2+3}-x+\sqrt{y^2+3}-y\\ \Leftrightarrow x+y=-x-y\\ \Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)