C=(x2-2xy+2y2)(x2+y2)-2x3y-3x3y2+2xy3
giúp mìk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $x^2+y^2+4y+13-6x$
$=(x^2-6x+9)+(y^2+4y+4)$
$=(x-3)^2+(y+2)^2$
b.
$4x^2-4xy+1+2y^2-2y$
$=(4x^2-4xy+y^2)+(y^2-2y+1)$
$=(2x-y)^2+(y-1)^2$
c.
$x^2-2xy+2y^2+2y+1$
$=(x^2-2xy+y^2)+(y^2+2y+1)$
$=(x-y)^2+(y+1)^2$
a. \(x^2+y^2+4y+12-6x=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)=\left(x-3\right)^2+\left(y+2\right)^2\)b. \(4x^2-4xy+1+2y^2-2y=\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)=\left(2x-y\right)^2+\left(y-1\right)^2\)c. \(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)
A= 2x^2 + y^2 - 2xy -2x+3
A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2
A= (x-y)^2 + (x-1)^2 + 2
(x-y)^2> hoặc = 0 với mọi giá trị của x
(x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2
=> A lớn hơn hoặc bằng 2
=> GTNN của A=2 tại x=y=1
`A= x^2+2xy-3x^2 +2y^2+3x^2-y^2`
`= (x^2-3x^2 +3x^2) +2xy +(2y^2 -y^2)`
`= x^2 +2xy +y^2`
`=(x+y)^2`
A = \(x^2\) + 2\(xy\) - 3\(x^2\) + 2y2 + 3\(x^2\) - y2
A = (\(x^2\)- 3\(x^2\) + 3\(x^2\)) + 2\(xy\) + (2\(y^2\) - y2)
A = \(x^2\) + 2\(xy\) + y2
A = (\(x\) + y)2
\(A-B-C=\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)-\left(3x^2+2xy+y^2\right)\)
\(=-x^2+3xy+2y^2-4x^2+5xy-3y^2-3x^2-2xy-y^2\)
\(=-8x^2+6xy-2y^2\)
Ta có:
\(M+N\)
\(=x^2+3xy+2y^2+x^2-2xy-y^2\)
\(=2x^2+xy+y^2\)
\(=x^2+2\cdot\dfrac{1}{2}y\cdot x+\dfrac{1}{4}y^2+x^2+\dfrac{3}{4}y^2\)
\(=\left(x+\dfrac{1}{2}y\right)^2+x^2+\dfrac{3}{4}y^2\)
Mà: \(\left\{{}\begin{matrix}\left(x+\dfrac{1}{2}y\right)^2\ge0\forall x,y\\x^2\ge0\forall x\\\dfrac{3}{4}y^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+x^2+\dfrac{3}{4}y^2\ge0\forall x,y\)
\(\Rightarrow M+N\ge0\forall x,y\)
Nên M, N không đồng thời nhận giá trị âm
Ta có
C − A − B = − x 2 + 3 x y + 2 y 2 − 4 x 2 − 5 x y + 3 y 2 − 3 x 2 + 2 x y + y 2 = − x 2 + 3 x y + 2 y 2 − 4 x 2 + 5 x y − 3 y 2 − 3 x 2 − 2 x y − y 2 = − x 2 − 4 x 2 − 3 x 2 + ( 3 x y + 5 x y − 2 x y ) + 2 y 2 − 3 y 2 − y 2 = − 8 x 2 + 6 x y − 2 y 2
Chọn đáp án B
\(C=\left(x^2-2xy+y^2\right)\left(x^2+y^2\right)-2x^3y-3x^3y^2+2xy^3\)
\(=\left(x^2+y^2\right)^2-2xy\left(x^2+y^2\right)-xy\left(2x^2+3x^2y+2y^2\right)\)
\(=\left(x^2+y^2\right)^2-xy\left(2x^2+2y^2+2x^2+3x^2y+2y^2\right)\)
\(=\left(x^2+y^2\right)^2-xy\left(4x^2+3x^2y+4y^2\right)\)