K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

26 tháng 9 2021

hi mk sẽ chia sẻ câu hỏi này giúp bn

26 tháng 9 2021

uhm, cảm ơn nha

17 tháng 1 2016

Vì n không chia hết cho 3 => n2 không chia hết cho 3

Xét 3 số tự nhiên liên tiếp: n2 - 1;n2; n2 + 1

Vì n2 không chia hết cho 3 => 1 trong 2 số n2 - 1 và n2 + 1 chia hết cho 3 => 1 trong 2 số đó có 1 số là hợp số

Vậy n2 - 1 và n2 + 1 không đồng thời là số nguyên tố

3 tháng 1 2019

như cứt

27 tháng 11 2015

đặt 3n+2 và 2n+1 = d 

suy ra 3n+2 chia hết cho d ; 2n+1 chia hết cho d

suy ra : (3n+2)-(2n+1) chia hết cho d

suy ra : 2.(3n+2)-3.(2n+1) chia hết cho d

suy ra : 1 chia hết cho d

suy ra d=1

vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau

tick cho mình nhé đúng rồi đấy

27 tháng 11 2015

Gọi UCLN(2n+5, 3n+7) là d 

Ta có 2n+5 chia hết cho d

=> 3(2n+5) chia hết cho d

=> 6n+15 chia hết cho d   (1) 

Ta có: 3n+7 chia hết cho d

=> 2(3n+7) chia hết cho d 

=> 6n+14 chia hết cho d    (2) 

Từ (1) và (2) suy ra: (6n+15) -( 6n+14) chia hết cho d 

=> 1 chia hết cho d

=> d=1

=> UCLN(2n+5, 3n+7) =1

Vậy 2n+5, 3n+7 là hai số nguyên tố cùng nhau

10 tháng 1 2016

Gọi d thuộc Ư(6n+5,4n+3)

=>6n+5 chia hết cho d ; 4n+3 chia hết cho d

=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d

=>(12n+10)-(12n+9) chia hết cho d

=> 1 chia hết cho d

=>d=1

Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau

28 tháng 12 2023

Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.

Ta có: 10p + 1 - p  = 9p + 1 

      Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k

          17p + 1 = 8p + 9p + 1   = 8p + 2k = 2.(4p + k) ⋮ 2

        ⇒ 17p + 1 là hợp số (đpcm)

      

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Câu 1: 

Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.

Nếu $p=3k+2$ thì:

$10p+1=10(3k+2)+1=30k+21\vdots 3$

Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)

$\Rightarrow p$ có dạng $3k+1$.

Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
 (đpcm)

7 tháng 6 2023

` @Answer`

Để \(B=\dfrac{5}{n-3}\in Z\)

\(\Rightarrow n-3\inƯC\left(5\right)\)

Mà \(ƯC\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có : 

`n-3=-1=> n=2`

`n-3=1=>n=4`

`n-3=-5=>n=-2`

`n-3=5=>n=8`

\(\rightarrow n\in\left\{2;4;-2;8\right\}\)

TH
Thầy Hùng Olm
Manager VIP
7 tháng 6 2023

B nguyên thì n-3 là ước của 5

hay n - 3 = {5; 1; -1; -5)

n = {8; 4; 2; 2}