Gpt: \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
Ai làm đc tặng 3 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{x-\sqrt{x^2-1}}=a\) và \(\sqrt{x+\sqrt{x^2-1}}=b\)
ta có hệ pt \(\hept{\begin{cases}ab=1\\\sqrt{a}+b=2\end{cases}}\)
đến đây cậu giải nốt nha
ĐK : tự làm :
Đặt \(\sqrt{2x+3x-\sqrt{x+2}}=a;\sqrt{2x+4+\sqrt{x+2}}=b\)
TA có : \(b^2-a^2=1+2\sqrt{x+2}=a+b\)
=> b - a = 1 => b = 1 + a
=> \(\sqrt{2x+4+\sqrt{x+2}}=1+\sqrt{2x+3-\sqrt{x+2}}\)
=> \(2x+4+\sqrt{x+2}=1+2x+3-\sqrt{x+2}+2\sqrt{2x+3-\sqrt{x+2}}\)
=> \(2\sqrt{x+2}=2\sqrt{2x+3-\sqrt{x+2}}\)
=> \(x+2=2x+3-\sqrt{x+2}\)
=> \(\sqrt{x+2}=x+1\)
Điều kiện xác định: \(0\le x\le1\)
Nhận ra rằng phương trình có nghiệm \(x=\frac{1}{2}\)khi x = 1-x nên ta sẽ dùng phương pháp đánh giá.
Với mọi a, b ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\).
Suy ra: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2< 2\left(\left(\sqrt{x}\right)^2+\left(\sqrt{1-x}\right)^2\right)=2\)
Vậy \(\sqrt{x}+\sqrt{1-x}\le\sqrt{2}\left(1\right)\)
Với mọi a, b ta luôn có: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
Thật vậy: \(\left(a+b\right)^4=\left(a+b\right)^2\left(a+b\right)^2\le2\left(a^2+b^2\right).2\left(a^2+b^2\right)=4\left(a^2+b^2\right)^2\)
\(4\left(a^2+b^2\right)^2< 4.2.\left(a^4+b^4\right)=8\left(a^4+b^4\right)\)suy ra: \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\)
áp dụng BĐT trên cho \(\sqrt[4]{x}+\sqrt[4]{1-x}\)ta có:
\(\left(\sqrt[4]{x}+\sqrt[4]{1-x}\right)^4\le8\left(\left(\sqrt[4]{x}\right)^4+\left(\sqrt[4]{1-x}\right)^4\right)=8\)
Suy ra:\(\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt[4]{8}\left(2\right)\)
từ (1), (2) suy ra: \(\sqrt{x}+\sqrt{1-x}+\sqrt[4]{x}+\sqrt[4]{1-x}\le\sqrt{2}+\sqrt[4]{8}\)
Dấu "=" xảy ra: \(x=1-x\Leftrightarrow x=\frac{1}{2}\)(thoản mãn).
'
tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,
Akai Haruma, @Nguyễn Việt Lâm
giúp mk vs! ngày mai phải nộp r
ĐKXĐ : x \(\ge2\)
Ta có \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}=2\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x-2\right)-\left(x+2\right)+2\)
<=> \(\sqrt{x-2}-\sqrt{x+2}=-\left(\sqrt{x-2}-\sqrt{x+2}\right)^2+2\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=y\)
=> y = -y2 + 2
<=> y2 - y - 2 = 0
<=> (y + 1)(y - 2) = 0
<=> \(\orbr{\begin{cases}y=-1\\y=2\end{cases}}\)
Khi y = -1
<=> \(\sqrt{x-2}-\sqrt{x+2}=-1\)
=> \(\left(\sqrt{x-2}-\sqrt{x+2}\right)^2=1\)
<=> \(\left(x-2\right)+\left(x+2\right)-2\sqrt{\left(x-2\right)\left(x+2\right)}=1\)
<=> \(2x-1=2\sqrt{\left(x-2\right)\left(x+2\right)}\)
=> 4x2 - 4x + 1 = 2(x - 2)(x + 2)
<=> 4x2 - 4x + 1 = 2x2 - 8
<=> 2x2 - 4x + 9 = 0 (vô lý) => TH1 loại
Khi y = 2 =>\(\sqrt{x-2}-\sqrt{x+2}=2\)
=> \(\left(\sqrt{x-2}-\sqrt{x+2}\right)^2=4\)
<=> \(2x-2\sqrt{\left(x-2\right)\left(x+2\right)}=4\)
<=> \(2x-4=2\sqrt{\left(x-2\right)\left(x+2\right)}\)
=> (2x - 4)2 = 4(x - 2)(x + 2)
<=> 4(x - 2)2 = 4(x - 2)(x + 2)
<=> -16(x - 2) = 0
<=> x = 2 (tm)
Vậy x = 2