Cho 10k-1chia hết cho 19 với k>10
Chứng minh rằng:
103k-1chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10k - 1 chia hết cho 19 nên 10k = 19m + 1
k cho mik nha Hiền xinh đẹp ^_<
Câu 1:
Số tổ nhiều nhất có thể chia là UCLN(24;20)
hay số tổ nhiều nhất có thể chia là 4 tổ
Câu 2:
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
a/ 10 ^2k - 1 = 10 ^ 2k - 10 ^k + 10 ^ k -1 = 10 ^k(10 ^ k - 1 ) + ( 10 ^ k - 1 ) chia hết cho 19. Bạn hay xem lại các tính chất
b/ 10^3k -1 = 10 ^ 3k - 10 ^k + 10^ k - 1 = 10 ^ k ( 10^2k - 1 ) + ( 10 ^k - 1) chia hết cho 19. xem lại bài a nha. h
nhớ tick nha
P(x) = 7x + 3x - 1 \(⋮9\)
Với x = 3k + 1 (k \(\inℕ^∗\))
= 73k + 1 + 33k + 1 - 1
= 343k.3 + 27k.3 - 1
= (343k.3 - 3) + 27k.3 + 2
= 3(343k - 1) + 27k.3 + 2
= 3(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
= 3.342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
=> P(x) : 9 dư 2
Với x = 3k + 2
P(x) = 73k + 2 + 33k + 2 - 1
= 343k.49 + 27k.9 - 1
= (343k.49 - 49) + 27k.9 + 48
= 49(343k - 1) + 27k.9 + 48
= 49(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.9 + 45 + 3
=> P(x) : 9 dư 3
Với x = 3k
Khi đó P(x) = 73k + 33k - 1
= (343k - 1) + 27k
= (343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k
= 342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k \(⋮9\)
Vậy P(x) \(⋮\Leftrightarrow x⋮3\)
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Đặt \(10^k-1=19n\left(n\in Nsao\right)\)
\(\Rightarrow10^k=19n+1\Rightarrow\left(10^k\right)^3=\left(19n+1\right)^3\Rightarrow10^{3k}-1=\left(19n\right)^3+38n\)
Ta thấy\(\left(19n\right)^3⋮19;38n⋮19\Rightarrow\left(19n\right)^3+38n⋮19\)
Hay\(10^{3k}-1⋮19\)
\(10^{2k}-1=10^{2k}-10^k+10^k-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
\(10^{3k}-1=10^{3k}-10^k+10^k-1=10^k\left(10^{2k}-1\right)+10^k-1⋮19\)