tìm x biết căn 7-x=x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
\(\sqrt{x}>2\Leftrightarrow x>4\)
\(5>\sqrt{x}\Leftrightarrow x< 25\)
\(\sqrt{x}< \sqrt{10}\Leftrightarrow x< 10\)( x không âm )
\(\sqrt{3x}< 3\Leftrightarrow3x< 9\Leftrightarrow x< 3\)
\(14\ge7\sqrt{2x}\Leftrightarrow\sqrt{2x}\le2\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
Tham khảo nhé~
\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.
\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)
\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)
1: Thay \(x=\dfrac{1}{25}\) vào C, ta được:
\(C=\left(\dfrac{1}{5}+2\right):\left(\dfrac{1}{5}-3\right)=\dfrac{11}{5}:\dfrac{-14}{5}=-\dfrac{11}{14}\)
2: Để C=-2 thì \(\sqrt{x}+2=-2\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow\sqrt{x}+2+2\sqrt{x}-6=0\)
\(\Leftrightarrow3\sqrt{x}=4\)
hay \(x=\dfrac{16}{9}\)
Để \(C=\dfrac{7}{5}\) thì \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{7}{5}\)
\(\Leftrightarrow7\sqrt{x}-21=2\sqrt{x}+10\)
\(\Leftrightarrow5\sqrt{x}=31\)
hay \(x=\dfrac{961}{25}\)
\(\sqrt{x}=7\left(x\ge0\right)\\ \Leftrightarrow x=7^2=49\)
a) \(4x^2-1=0\)
\(\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\)
b) \(2x^2+0,82=1\)
\(2x^2=1-0,82\)
\(2x^2=0,18\)
\(x^2=\frac{0,18}{2}\)
\(x^2=0,09\)
\(\Rightarrow x=0,3\)
vậy \(x=0,3\)
c) \(7-\sqrt{x}=0\)
\(\sqrt{x}=7\)
\(x=49\)
vậy \(x=49\)
d) ko rõ đề bài
Ai ns chuyện vs T k .Chns RÃ MEN...kaf kaf........
7 - x= x - 1
=> 7 + 1 = x + x
=> 2x = 8
=> x = 4