tìm x
( 2x - 1)2 - ( 3x + 4)2 = 0
mấy bạn giỏi toán đâu nào ??
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>(x+2018)(6x-3)=0
=>x+2018=0 hoặc 6x-3=0
=>x=1/2 hoặc x=-2018
2: x(x-11)+3(11-x)=0
=>(x-11)(x-3)=0
=>x=11 hoặc x=3
4: =>(x+5)(2x-4)=0
=>2x-4=0 hoặc x+5=0
=>x=2 hoặc x=-5
3: =>(x-3)(x+2)=0
=>x=3 hoặc x=-2
Bài 1:
\(6x\left(x+2018\right)-3\left(x+2018\right)=0\)
\(\Leftrightarrow\left(x+2018\right)\left(6x-3\right)=0\)
\(\Leftrightarrow3\left(x+2018\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2018\\2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2018\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài 2:
\(x\left(x-11\right)+3\left(11-x\right)=0\)
\(\Leftrightarrow x\left(x-11\right)-3\left(x-11\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=11\end{matrix}\right.\)
Câu 3:
\(x\left(x-3\right)-2\left(3-x\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Câu 4:
\(2x\left(x+5\right)-4\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\2x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
a) \(\left(x-3\right).\left(x^2+3x+9\right)-x.\left(x+4\right)\left(x-4\right)=21\)
\(\Leftrightarrow x^3-27-x.\left(x^2-16\right)=21\) \(\Leftrightarrow x^3-27-x^3+16x=21\)
\(\Leftrightarrow16x=21+27\) \(\Leftrightarrow16x=48\) \(\Leftrightarrow x=3\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-x.\left(x^2+2\right)=4\)
\(\Leftrightarrow x^3+8-x^3-2x=4\) \(\Leftrightarrow-2x=4-8\) \(\Leftrightarrow-2x=-4\) \(\Leftrightarrow x=2\)
Ta có: \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4\left(1+xy\right)\)
\(\Leftrightarrow x^2y^2+x^2+y^2+1-2\left(x-y\right)\left(xy-1\right)=4+4xy\)
\(\Leftrightarrow\left(x^2y^2-2xy+1\right)+\left(x^2-2xy+y^2\right)-2\left(x-y\right)\left(xy-1\right)=4\)
\(\Leftrightarrow\left(xy-1\right)^2-2\left(x-y\right)\left(xy-1\right)+\left(x-y\right)^2=4\)
\(\Leftrightarrow\left(xy-1-x+y\right)^2=4\)
\(\Leftrightarrow\left[\left(x+1\right)\left(y-1\right)\right]^2=4\)
\(\Leftrightarrow\left(x+1\right)^2\left(y-1\right)^2=4=1.4\)
Vì \(\left(x+1\right)^2;\left(y-1\right)^2\) là các SCP và đều không âm nên ta chỉ cần xét các TH sau:
TH1: \(\hept{\begin{cases}\left(x+1\right)^2=1\\\left(y-1\right)^2=4\end{cases}}\) => \(\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\) và \(\orbr{\begin{cases}y-1=2\\y-1=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\) và \(\orbr{\begin{cases}y=3\\y=-1\end{cases}}\)
TH2: \(\hept{\begin{cases}\left(x+1\right)^2=4\\\left(y-1\right)^2=1\end{cases}}\) => \(\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\) và \(\orbr{\begin{cases}y-1=1\\y-1=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\) và \(\orbr{\begin{cases}y=2\\y=0\end{cases}}\)
Kết luận:...
\(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4\left(1+xy\right)\)
\(\Leftrightarrow\left(1-2xy+x^2y^2\right)+2\left(x-y\right)\left(1-xy\right)=4+4xy\)
\(\Leftrightarrow\left(1-xy\right)^2+2\left(x-y\right)\left(1-xy\right)+\left(x^2-2xy+y^2\right)=4\)
\(\Leftrightarrow\left(1-xy\right)^2+2\left(x-y\right)\left(1-xy\right)+\left(x-y\right)^2=4\)
\(\Leftrightarrow\left(1-xy+x-y\right)^2=4\)
\(\Leftrightarrow\left[\left(x+1\right)\left(1-y\right)\right]^2=2^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(1-y\right)=2\\\left(x+1\right)\left(1-y\right)=-2\end{cases}}\)
Tự xét các TH
(x-3)(2x-7)=0
x=3 hoặc x=\(\dfrac{7}{2}\)
Vậy \(x\in\left\{3;\dfrac{7}{2}\right\}\)
a. \(\frac{4}{x-4}=-\frac{2}{3}\)
\(\Rightarrow\frac{4}{x-4}=\frac{4}{-6}\)
\(\Rightarrow x-4=-6\)
\(\Rightarrow x=-6+4\)
Vậy x = -2.
b. \(\frac{x-3}{-2}=\frac{5-x}{3}\)
\(\Rightarrow3.\left(x-3\right)=-2.\left(5-x\right)\)
\(\Rightarrow3x-9=-10+2x\)
\(\Rightarrow3x-2x=-10+9\)
Vậy x = -1.
c. \(\frac{x-2}{x-4}=\frac{x+3}{x+6}\)
\(\Rightarrow\left(x-2\right)\left(x+6\right)=\left(x-4\right)\left(x+3\right)\)
\(\Rightarrow x^2+6x-2x-12=x^2+3x-4x-12\)
\(\Rightarrow x^2-x^2+6x-2x-3x+4x=-12+12\)
\(\Rightarrow5x=0\)
Vậy x = 0.
1.a) \(\Leftrightarrow\) 3x+10-2x =0
\(\Leftrightarrow\text{ 3x-2x=-10}\)
\(\Leftrightarrow x=-10\)
b) coi lại có thiếu ngoặc ko nhé
cứ nhân vào dấu ngoặc rồi làm như thường
(2x-1)2-(3x+4)2=0
=> 2x-1=0 hoặc 3x+4=0
Xét :
2x-1=0
2x=0+1
2x=1
x=1:2
x=1/2
Xét :
3x+4=0
3x=-4
x=-4:3
x=-4/3
Vậy x=1/2 hoặc x=-4/3
\(\left(2x-1\right)^2-\left(3x+4\right)^2=0\)
\(\Rightarrow\left[\left(2x-1\right)-\left(3x+4\right)\right].\left[\left(2x-1\right)+\left(3x+4\right)\right]=0\)
\(\Rightarrow\left(2x-1-3x-4\right)\left(2x-1+3x+4\right)=0\)
\(\Rightarrow\left(-x-5\right)\left(5x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x-5=0\\5x+3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{-3}{5}\end{cases}}\)