K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

Ta có: \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4\left(1+xy\right)\)

\(\Leftrightarrow x^2y^2+x^2+y^2+1-2\left(x-y\right)\left(xy-1\right)=4+4xy\)

\(\Leftrightarrow\left(x^2y^2-2xy+1\right)+\left(x^2-2xy+y^2\right)-2\left(x-y\right)\left(xy-1\right)=4\)

\(\Leftrightarrow\left(xy-1\right)^2-2\left(x-y\right)\left(xy-1\right)+\left(x-y\right)^2=4\)

\(\Leftrightarrow\left(xy-1-x+y\right)^2=4\)

\(\Leftrightarrow\left[\left(x+1\right)\left(y-1\right)\right]^2=4\)

\(\Leftrightarrow\left(x+1\right)^2\left(y-1\right)^2=4=1.4\) 

Vì \(\left(x+1\right)^2;\left(y-1\right)^2\) là các SCP và đều không âm nên ta chỉ cần xét các TH sau:

TH1: \(\hept{\begin{cases}\left(x+1\right)^2=1\\\left(y-1\right)^2=4\end{cases}}\) => \(\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\) và \(\orbr{\begin{cases}y-1=2\\y-1=-2\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\) và \(\orbr{\begin{cases}y=3\\y=-1\end{cases}}\)

TH2: \(\hept{\begin{cases}\left(x+1\right)^2=4\\\left(y-1\right)^2=1\end{cases}}\) => \(\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\) và \(\orbr{\begin{cases}y-1=1\\y-1=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\) và \(\orbr{\begin{cases}y=2\\y=0\end{cases}}\) 

Kết luận:...

4 tháng 9 2020

\(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4\left(1+xy\right)\)

\(\Leftrightarrow\left(1-2xy+x^2y^2\right)+2\left(x-y\right)\left(1-xy\right)=4+4xy\)

\(\Leftrightarrow\left(1-xy\right)^2+2\left(x-y\right)\left(1-xy\right)+\left(x^2-2xy+y^2\right)=4\)

\(\Leftrightarrow\left(1-xy\right)^2+2\left(x-y\right)\left(1-xy\right)+\left(x-y\right)^2=4\)

\(\Leftrightarrow\left(1-xy+x-y\right)^2=4\)

\(\Leftrightarrow\left[\left(x+1\right)\left(1-y\right)\right]^2=2^2\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(1-y\right)=2\\\left(x+1\right)\left(1-y\right)=-2\end{cases}}\)

Tự xét các TH

27 tháng 7 2018

Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng

x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)

Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.

27 tháng 7 2018

cho minh xin de

19 tháng 8 2021

1) = x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x - 1

    = 6x^2

2) = x^3 + 1 - ( x^3 - 1 )

    = x^3 + 1 - x^3 + 1

    = 2 

3) dài lắm thôi ko viết ( Bạn áp dụng cái NHÂN ĐA THỨC VỚI ĐA THỨC nhé )

 Học tốt ~

9 tháng 7 2017

Thao Nguyen VT= Vế trái

VP= Vế phải

9 tháng 7 2017

2. CMR:

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)

Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)

=> đpcm.

c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)

=> đpcm.

9 tháng 7 2018

b2

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right).\)

\(\Leftrightarrow x^3+y^3-x^3+y^3=2y^3\)

 Vậy biểu thức phụ thuộc vào biến y

9 tháng 7 2018

Mk lm bài 2 nhé.

(x + y) (x 2 - xy + y 2) - (x - y) (x 2 + xy + y 2)

= x 3 + y 3 - x 3 - y 3

= 0.

Vậy biểu thức A ko phụ thuộc vào x, y.

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

a)

\(\begin{array}{l}\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\\ = x.{x^2} + x.xy + x.{y^2} - y.{x^2} - y.xy - y.{y^2}\\ = {x^3} + {x^2}y + x{y^2} - {x^2}y - x{y^2} - {y^3}\\ = {x^3} - {y^3}\end{array}\)

b)

\(\begin{array}{l}\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\\ = x.{x^2} + x.\left( { - xy} \right) + x{y^2} + y.{x^2} + y.\left( { - xy} \right) + y.{y^2}\\ = {x^3} - {x^2}y + x{y^2} + {x^2}y - x{y^2} + {y^3}\\ = {x^3} + {y^3}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

c)

\(\begin{array}{l}\left( {4{\rm{x}} - 1} \right)\left( {6y + 1} \right) - 3{\rm{x}}\left( {8y + \dfrac{4}{3}} \right)\\ = 4{\rm{x}}.6y + 4{\rm{x}}.1 - 1.6y - 1.1 - 3{\rm{x}}.8y - 3{\rm{x}}.\dfrac{4}{3}\\ = 24{\rm{x}}y + 4{\rm{x}} - 6y - 1 - 24{\rm{x}}y - 4{\rm{x}}\\ =  - 6y - 1\end{array}\)

d)

\(\begin{array}{l}\left( {x + y} \right)\left( {x - y} \right) + \left( {x{y^4} - {x^3}{y^2}} \right):\left( {x{y^2}} \right)\\ = x.x + x.\left( { - y} \right) + y.x + y.\left( { - y} \right) + \left( {x{y^4}} \right):\left( {x{y^2}} \right) + \left( { - {x^3}{y^2}} \right):\left( {x{y^2}} \right)\\ = {x^2} - xy + xy - {y^2} + {y^2} - x^2\\ = 0\end{array}\)

13 tháng 11 2019

Giúp mình với các bạn

19 tháng 10 2023

a) \(\left(4x^4-8x^2y^2+12x^5y\right):\left(-4x^2\right)\)

\(=4x^4:-4x^2-8x^2y^2:-4x^2+12x^4y:-4x^2\)

\(=-x^2+2y^2-3x^2y\)

b) \(x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)

\(=x^3-x^2y^2-xy+x^2y^2-x^3\)

\(=-xy\)