Chứng minh A<2.Cho A=
\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{100}{2^{100}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)
b: a<b
=>-2a>-2b
=>-2a-3>-2b-3
c: =x^2+2xy+y^2+y^2+6y+9
=(x+y)^2+(y+3)^2>=0 với mọi x,y
d: a+3>b+3
=>a>b
=>-5a<-5b
=>-5a+1<-5b+1
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
ˆBADBAD^ chung
Do đó: ΔADB=ΔAEC
b: Ta có: ΔADB=ΔAEC
nên BD=CE
Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có
BC chung
CE=BD
Do đó:ΔEBC=ΔDCB
Suy ra: ˆOCB=ˆOBCOCB^=OBC^
hay ΔOBC cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: Ta có: ΔEBC vuông tại E
mà EM là đường trung tuyến
nên BC=2EM
=)) Yêu cầu vẽ gì ở đề bài với câu b v bạn cm gì ở phần a v đăng lại bài đi
a,xét ΔABC và ΔAHC, có:
góc BAC=góc AHC(=90 độ)
góc C chung
=>ΔABC đồng dạng ΔAHC(g-g)
a)Tam giác MAK =tgKCB(c.g.c) (1) ->AM=BC (2 cạnh tương ứng ) b) tg ANE=tg EBC (c.g.c) (2) ->AN=BC (2 cạnh tương ứng) c) vì AN =BC , AM=BC ->AN=AM
d) từ (1) suy ra góc AMK =góc KCB (2 góc t ứng )
Mà chúng ở vị trí so le trong suy ra AM//BC
e) từ (2) -> góc ANE =góc EBC (2 góc t ứng ) mà chúng ở vị trí so le trong -> AN//BC
g) vì AN//BC , AM//BC -> A,N,N thẳng hàng (3)
Mà MA= BC , AN =BC
-> MA=AN (4)
Từ (3) , (4) -> A là trung điểm của MN
a: Xét ΔOKA vuông tại K và ΔOHB vuông tại H có
OA=OB
góc O chung
=>ΔOKA=ΔOHB
b: góc OAK+góc CAB=góc OAB
góc OBH+góc CBA=góc OBA
mà góc OAK=góc OBH và góc OAB=góc OBA
nên góc CAB=góc CBA
=>ΔCAB cân tại C
c: Xét ΔOAB có OH/OA=OK/OB
nên HK//AB