K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2022

a: Xét ΔBAE và ΔBDE có

BA=BD

góc ABE=góc DBE

BE chung

DO đo: ΔBAE=ΔBDE
b: ΔBAE=ΔBDE
nên góc BDE=90 độ

=>DE vuông góc với BC

c: Xét ΔAEF vuông tại A và ΔDEC vuông tại E có

EA=ED

góc AEF=góc DEC

Do đó: ΔAEF=ΔDEC

=>EF=EC và AF=DC

=>BF=BC

=>B nằm trên đường trung trực của FC(1)

EF=EC

nên E nằm trên đường trung trực của FC(2)

IF=IC

nên I nằm trên đường trung trực của FC(3)

Từ (1), (2) và (3) suy ra B,E,I thẳng hàng

18 tháng 4 2021

undefined

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh...
Đọc tiếp

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?

Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.

Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE

Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF

Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!

0
29 tháng 1 2022

4) a.Ta có: 

\(BA=BE\)

\(ABD=DBE\rightarrow\Delta ABD=\Delta EBDchungBD\)

b) Từ câu a \(\rightarrow BED=BAD=90^o\)

\(\rightarrow DE\text{⊥}BC\)

c) Ta có :

\(BKD=ADK=ACB+DEC=90^o\)

\(BKD=ACB\)

\(\text{Δ B D K = Δ B D C ( g . c . g )}\)

\(BK=BC\)

 

undefined

5)

Ta có:

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Mà \(8< 9\Rightarrow2^{300}< 3^{200}\)

29 tháng 1 2022

Bài 5:

\(2^{300}=\left(2^3\right)^{100}=8^{100}\\ 3^{200}=\left(3^2\right)^{100}=9^{100}\\ Vì:8< 9\Rightarrow8^{100}< 9^{100}\\ \Rightarrow2^{300}< 3^{200}\)

a.Ta có:

⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)

b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o

→DE⊥BC→DE⊥BC

c.Ta có:

ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o

→ˆBKD=ˆACB→BKD^=ACB^

→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)

→BK=BC→BK=BC

image  
24 tháng 7 2019

A B C D E I O

a, xét tam giác BAE và tam giác BDE có : BE chung

góc ABE = góc DBE do BE là phân giác của góc ABC (gt)

AB = BD (gt)

=> tam giác BAE = tam giác BDE (c-g-c)

b, tam giác BAE = tam giác BDE (câu a)

=> góc BAE = góc BDE (đn)

mà óc BAE = 90 do tam giác ABC vuông tại A (gt)

=> góc BDE = 90 

=> ED _|_ BC (đn)

c, tam giác BAE = tam giác BDE (Câu a)

=> AE = DE (đn)

d,  gọi BE cắt CI tại O 

AB = BD (gt)

AI = DC (gt)

AB + AI = BI 

BD + DC = BC

=> BI = BC 

xét tam giác IOB và tam giác COB có : OB chung

góc IBO = góc CBO do BO là phân giác của góc IBC (gt)

=> tam giác IOB = tam giác COB (c-g-c)

=> góc IOB = góc COB (đn)

mà góc IOB + góc COB = 180 (kb)

=> góc IOB = 180 : 2 = 90 

=> BO _|_ CI (đn)

CA _|_ AB do góc BAC = 90 

xét tam giác IBC 

=> ID _|_ BC (tc)

mà ED _|_ BC (câu b)

=> I; E; D thẳng hàng

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên DA=DE

Ta có: ΔABD=ΔEBD

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE⊥BC

5 tháng 1 2022

a: Xét ΔABD và ΔEBD có

BA=BE

ˆABD=ˆEBDABD^=EBD^

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên DA=DE

Ta có: ΔABD=ΔEBD

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

18 tháng 10 2018

giúp mình gấp với, còn c, d, e thôiiii