Tìm các số nguyên x và y biết \(|\)x+2015\(|\)+\(|\)y-2016\(|\)= 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì l x + 2015 l \(\ge\)0 với mọi x thuộc Z
l y - 2016 l \(\ge\)0 với mọi x thuộc Z
mà l x + 2015 l + l y -2016 l = 0
=> \(\hept{\begin{cases}x+2015=0\\y-2016=0\end{cases}}\)=> \(\hept{\begin{cases}x=-2015\\y=2016\end{cases}}\)
Do |x+2015| ≥ 0 với mọi x
|y-2016| ≥ 0 với mọi y
Suy ra |x+2015| + |y-2016| ≥ 0 với mọi x;y
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\\\end{cases}}\)
Đồng thời x+2015 và y-2016 bằng 0
=) (x;y)=(-2015;2016)
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015