Tìm n thuộc z
a. 3n+1 chia hết cho 2n-3
b. 5n-3 chia hết cho 2n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
a: \(\Leftrightarrow2n+2+1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
b: \(\Leftrightarrow3n-3+8⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)
c: \(\Leftrightarrow4n+6+4⋮2n+3\)
\(\Leftrightarrow2n+3\in\left\{1;-1\right\}\)
hay \(n\in\left\{-1;-2\right\}\)
d: \(\Leftrightarrow15n+18⋮3n+1\)
\(\Leftrightarrow15n+5+13⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;13;-13\right\}\)
hay \(n\in\left\{0;4\right\}\)
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
a) ta có: 3n + 1 chia hết cho 2n - 3
=> 6n + 2 chia hết cho 2n - 3
6n - 9 + 11 chia hết cho 2n - 3
3.(2n-3) + 11 chia hết cho 2n - 3
mà 3.(2n-3) chia hết cho 2n - 3
=> 11 chia hết cho 2n - 3
=>...
bn tự làm tiếp nha
b) ta có: 5n - 3 chia hết cho 2n + 1
=> 10n - 6 chia hết cho 2n + 1
10n + 5 - 11 chia hết cho 2n + 1
5.(2n+1) - 11 chia hết cho 2n + 1
...
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
a) 5n + 6 chia hết cho 5n + 1
5n + 1 + 5 chia hết cho 5n + 1
=> 5 chia hết cho 5n + 1
=> 5n + 1 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Xét 4 trường hợp, ta có '
5n + 1 = 1 => 5n = 0 => n = 0
5n + 1 = -1 => 5n = -2 => n = -2/5
5n + 1 = 5 => 5n = 4 => n = 4/5
5n + 1 = -5 => 5n = -6 => n = -6/5
b)
2n + 3 chia hết cho 3n + 1
3(2n + 3 ) chia hết cho 3n + 1
6n + 9 chia hết cho 3n + 1
6n + 2 + 7 chia hết cho 3n + 1
2(3n + 1) + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1 ; -1 ; 7 ; -7}
Còn lại làm giống bài a nha